
Distributed Training
Make training system go brrrrr

Yongye Zhu, Anderson Lee, Ahmed Khaled

Problem Statement

● How to train a 405B model from scratch?
○ How to train a smaller 1B model?
○ How to scale the model size with multiple GPUs? (e.g. 16k)
○ How to let the training run as fast as possible? Run fast

means keep the GPU doing matmul

Training Model

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Calculating Memory Usage

Model Parameter: 𝛌·N

Model Gradient: 𝛌·N

Optimizer State: 2𝛌·N

+ Activation + Data

𝛌: Bytes per parameter

We can only train 1B on single GPU!!

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Peak GPU Memory Usage

Gradient Accumulation

● We training LLM in batches
○ We will update the parameter every gbs (global batch size)

● During forward pass, we keep activation to calculate
gradient.

● We can calculate the mean of gradient to update the
parameter. (Parallel-Friendly)

Data Parallel

Gradient
Accumulation

https://huggingface.co/spaces/nanotron/ultrascale-playbook

GPU Communication: All-Reduce

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf

Data Parallel

● Each GPU perform mbs = gbs // num_gpus batches

● Result gradient are all-reduced (averaged). This can
be hidden in computations

● Each GPU update parameter independently.
● Training total batches faster with more GPUs.
● Still can’t train a 7B model since each GPU has full

model parameter.

Compute/Communication Overlap

● Gradient accumulation for each layer happens
immediately after calculated.

● Communication happens in the next (previous) layer
gradient calculation.

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Parameter Sharding

Big Picture

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Measuring network efficiency

FLOP utilization

● FLOPs/s of operation ÷ FLOPs/s of accelerator
● Example: If H100 achieves 989 TFLOPS peak for

BF16, but your model runs at 400 TFLOPS
Utilization = 400/989 ≈ 40%

● For LLM training, Model FLOPs Utilization (MFU) we
usually aim for is around 50%-60%

Communication intensity

● Communication bytes ÷ (Memory / Network
bandwidth bytes)

● Measures fraction of bandwidth used for inter-device
communication

● Example: all-reduce gradient
○ Simplest form of parallelism
○ Must communicate 2×(N-1)/N × gradient_size bytes per

iteration

Arithmetic Intensity

● Computation FLOPs ÷ Memory bytes accessed
● Measures compute per byte of memory traffic
● High arithmetic intensity

 = compute-bound (good!)
● Low arithmetic intensity

 = memory-bound
● E.g. for H100:

○ Need >240 FLOPs/byte to be compute-bound with BF16

Matrix multiplication example

● Most computations in a transformer are just mat
muls

● Consider multiplying two N×N matrices:
○ FLOPs: 2N³ (in reality can be different due to blocking)
○ Memory read/write: 3N² elements
○ Arithmetic intensity (AI) = 2N³ ÷ (3N² × bytes per element)
○ N=1024, BF16: AI = 341 FLOPs/byte

■ Compute-bound for H100.

Sharded matrix multiplication (I)

● What if we sharded the matrices?
● Consider two NxN matrices distributed across M

devices
● Device i holds

Sharded matrix multiplication (II)

Each device i needs to compute C[iN/M:(i+1)N/M, :]:

1. Local compute: Alocal × Blocal → C[i,i] block
2. Ring communication: Send Blocal, receive Bneighbor

3. Repeat M-1 times to compute all blocks of C’s rows

Sharded matrix multiplication (III)

● FLOPs per device: 2N³/M (perfectly scaled!)
● Memory per device: 2N²/M (input) + N²/M (output)
● Communication: (M-1) × N²/M elements = N²(M-1)/M
● Arithmetic intensity: 2N³/M ÷ N²(M-1) ≈ 2N/(M-1)

○ Decreases with more devices
○ Need larger N to maintain compute-bound operation

Some key numbers

● H100 BF16 Performance: 989 TFLOPS
● Transformer Training FLOPs: 6×N×T

○ N = number of parameters
○ T = number of tokens per step

● Intranode bandwidth (NVLink): 900 GB/s
● Internode bandwidth:

○ InfiniBand NDR: 400 Gbps = 50 GB/s
○ Ethernet alternatives: 100-400 Gbps typical

Forms of parallelism

Review: Adam

● Parameters: N
● Gradients: N
● Momentum: N
● 2nd order

momentum: N
● Total: 4N

parameters in memory
● + Activations + Data

Sharding

● Different slices of a tensor belong to different
devices

● Example: Weight matrix W ∈ ℝM×N with 4 devices
○ Device 0: W[0:M/4, :]
○ Device 1: W[M/4:M/2, :]
○ Device 2: W[M/2:3M/4, :]
○ Device 3: W[3M/4:M, :]

● Key challenge: Managing communication when
sharded tensors interact

ZeRO-1 Optimizer State Sharding

● Optimizer states (m, v from Adam) divided layerwise
among devices

● Each device only maintains optimizer states for its
assigned layers

● After computing gradients:
○ Device updates only its owned optimizer states
○ Broadcasts updated parameters to all devices

ZeRO-1 Optimizer State Sharding

https://huggingface.co/spaces/nanotron/ultrascale-playbook

All-Gather

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf

Reduce-Scatter

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf

ZeRO-1: Memory & Communication

● Memory: kΨ/N+2Ψ parameters per device
● Communication:

○ Same as data parallelism
○ No additional communication overhead (q for class: why?)
○ Again we can hide this overhead in forward and backward

computation

Note on ZeRO

● This was a bit confusing to me personally
● We need to differentiate between memory usage for

all layers vs transient memory usage (i.e. for a single
layer)

● (see whiteboard)

ZeRO-2: Optimizer+Gradient Sharding

● Gradients also sharded with same layout as
optimizer states

● During backward:
○ Compute full gradients locally
○ Reduce-scatter to get sharded gradients
○ Each device keeps only gradients for its layers

ZeRO-2: Memory & Communication

● Memory: (k + 1)Ψ/N+Ψ parameters per device
● Communication:

○ Same as data parallelism
○ No additional communication overhead
○ We don’t need to get the gradients for other layers
○ Still communicate updated params

● Supported by DeepSpeed, Megatron-LM, PyTorch
FSDP

ZeRO-3: Full Parameter Sharding

● Parameters also sharded layerwise across devices
● At layer L:

○ Before forward pass: All-gather parameters for this layer ->
do forward computation (replicated)

○ After forward: Discard non-owned parameters
○ Before backward: All-gather parameters again -> do

backward computation (replicated)
○ After backward: Do optimizer step + discard non-owned

parameters

ZeRO-3 Tradeoffs

● Memory: (k+2)Ψ/N bytes per device
● Communication: 1.5X of DP

○ Prev: one all-gather in bwd pass
○ Now: one all-gather in fwd, one all-gather in bwd

● “Sharded parameters, replicated computation”

FSDP2

● Like ZeRO-3, but instead of sharding layerwise,
shard across dim-0 of every param/grad/optimizer
state tensor

● Easier conceptually to implement
● Natively integrated into PyTorch
● Can be integrated with smarter torch.compile.

Where we are now?

Still bottlenecked by activation memory (especially with long seq len)

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Activation Sharding

Tensor Parallelism

● Like ZeRO-3, but computation is also sharded
● Parameters stay on assigned devices
● Activations are all-reduced/all-gathered between

devices as needed for computation
● How we choose to do the sharding strongly

influences the computation/communication

Tensor Parallelism

● Consider MLP: Y = GeLU(XA) followed by Z = YB
● Row-wise split of A:

○ Partition: X = [X₁, X₂], A = [A₁; A₂]
○ Result: Y = GeLU(X₁A₁ + X₂A₂)
○ Problem: GeLU(X₁A₁ + X₂A₂) ≠ GeLU(X₁A₁) + GeLU(X₂A₂)
○ Requires synchronization before GeLU, beating the point

Tensor Parallelism

● Consider MLP: Y = GeLU(XA) followed by Z = YB
● Column-wise split of A:

○ Partition: A = [A₁, A₂]
○ Result: [Y₁, Y₂] = [GeLU(XA₁), GeLU(XA₂)]
○ GeLU applied independently - no sync needed!
○ Second GEMM: Split B row-wise to match
○ Only one all-reduce after second GEMM

Tensor Parallelism

From
Megatron-LM
paper

Tensor Parallelism

From
Megatron-LM
paper

Tensor Parallelism

From
Megatron-LM
paper

Tensor Parallel Performance

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Huge Drop

Tensor Parallel Performance

● All-Reduce sits on the critical
path during forward.

● One node has 8 GPUs.
● Cross-node comm is much

slower than inter-node comm.
(NvLink vs InfiniBand)

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Pipeline parallelism

● Model divided into stages (groups of layers)
● Each device owns one pipeline stage
● Data flows through devices sequentially
● Limitation: Device Idle

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Microbatch All Forward All Backward

● Micro-batching to reduce pipeline bubbles
● Reduce total computation time by m, number of

microbatches
● Problem: Need to store all microbatch activations

https://huggingface.co/spaces/nanotron/ultrascale-playbook

1Forward 1Backward (Depth-First Scheduling)

● Prioritize backward pass over forward pass
● Immediate release activation memory after backward

pass
● Still same time as AFAB, but more memory efficient

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Interleaved 1F1B

● Each GPU has more than one layer
● Computation circulating around GPUs
● Further reduce overall training time by n, number of

layer each GPU has.

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Zero Bubble Pipeline/DualPipe

DeepSeek-V3 Technical Report: arxiv:2412.19437

https://arxiv.org/abs/2412.19437

Memory problem in training models

● Tensor parallelism
○ Help but introduces overhead

● Pipeline Parallelism
○ Doesn’t help if maintaining

device utility to avoid bubble

● Activation Recomputation

Activation Recomputation

● A.k.a. Gradient Checkpointing
● Select all/some layers’ output to save, then

re-forward pass from closest “checkpoint”
● Trading off compute for saving memory

Activation
Recomputation

Within-block activation
not saved

Redo forward pass from
last block’s output

Bottom figure from Megatron-LM

Reducing Activation Recomputation

● Three main components
○ Tensor Parallelism (Megatron-LM)
○ Sequence Parallelism
○ Selective Activation Recomputation

● where 2. and 3. Are orthogonal

Computing Activation Memory

● Setup/Notation

● Fp16 → each element takes 2 bytes, except dropout
mask takes 1 byte

Table from
Korthikanti et. al

Agenda: Computing Activation Memory

● Full Activation Recomputation (Lowest)
● Full Activation (Highest)
● w/ Tensor Parallelism
● w/ Sequence Parallelism
● w/ Selective Activation Recomputation

Full Activation Recomputation

● Memory (per layer): sbh(2)

Full Activation

Memory (per layer)

Tensor Parallelism

Memory (per layer)

Can we do
better?

+ Sequence Parallelism

Main Observation – Those tensor-parallelism-excluded
components are not sequence-dependent

+ Sequence Parallelism

Does it increase extra communication by all-gather +
reduce-scatter? No, because ring all reduce = all-gather
+ reduce-scatter

+ Sequence Parallelism

We are not yet achieving 10 / t

+ Sequence Parallelism

Memory (per layer)

+ Sequence Parallelism

Memory (per layer)

Can we do even
better?

+ Selective Activation Recomputation

● Recompute the portion isn’t too expensive
● Trade-off those recomputation for better memory

saving

Summary

● Tensor parallelism saves parallelized parts intuitively
● Sequence parallelism saves the rest (some trade-off)
● Selective Recomputation trades off compute for large

memory reduction (s^2)
○ Pointer → FlashAttention solves this problem nowadays!

Evaluation

● The terms reduced matter! (linearly reducing the 10
with number of devices)

Evaluation

● Select the right thing to recompute, introducing
much less overhead (while saving much more
memory)

Question

● Can we do even even better? What components
discussed were not optimized yet?

● Can we do an analysis on overhead of recomputation
(over components) and memory reduction to fit even
smaller device?

Combined Parallelism in real world training

Training LLama3 in 16k GPUs

The Llama 3 Herd of Models, arxiv:2407.21783

Context Parallel

● In Data Parallelism, we shard activation (for attention and FFN)
in alone batch dimension, how about long context training?
Where we are unable to shard efficiently since batch size is
small

● In Sequence Parallel, only the non-attention parts are sharded
across devices. The attention part still remains the full
sequence

● What about extremely long context (1M tokens) -> Context
Parallel!!! Next Lecture!!

Expert Parallelism

● MoE layer contains multiple expert networks
● Example: 32 experts distributed across 8 GPUs (4

experts/GPU)
● Tokens routed to different GPUs based on expert

selection
● Each token typically activates k experts (e.g., k=2)

Expert Parallelism

● Conceptually still a form of model parallelism
● Differences

○ Requires specialized routing implementation
○ Dynamic load balancing challenges
○ Token dropping and auxiliary losses
○ Different communication patterns (all-to-all vs all-reduce)

Reference

[1] Ultra-Scale Playbook:
https://huggingface.co/spaces/nanotron/ultrascale-playbook

[2] UCSD CSE 234: https://hao-ai-lab.github.io/cse234-w25/

[3] The Llama 3 Herd of Models, arXiv:2407.21783

https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://hao-ai-lab.github.io/cse234-w25/

