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Problem Statement

● How to train a 405B model from scratch?
○ How to train a smaller 1B model? 
○ How to scale the model size with multiple GPUs? (e.g. 16k)
○ How to let the training run as fast as possible? Run fast 

means keep the GPU doing matmul



Training Model

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Calculating Memory Usage

Model Parameter: 𝛌·N

Model Gradient: 𝛌·N

Optimizer State: 2𝛌·N

+ Activation + Data

𝛌: Bytes per parameter

We can only train 1B on single GPU!!

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Peak GPU Memory Usage



Gradient Accumulation

● We training LLM in batches
○ We will update the parameter every gbs (global batch size)

● During forward pass, we keep activation to calculate 
gradient.

● We can calculate the mean of gradient to update the 
parameter. (Parallel-Friendly)



Data Parallel 

Gradient 
Accumulation

https://huggingface.co/spaces/nanotron/ultrascale-playbook



GPU Communication: All-Reduce

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf



Data Parallel

● Each GPU perform mbs = gbs // num_gpus batches

● Result gradient are all-reduced (averaged). This can 
be hidden in computations

● Each GPU update parameter independently. 
● Training total batches faster with more GPUs.
● Still can’t train a 7B model since each GPU has full 

model parameter.



Compute/Communication Overlap

● Gradient accumulation for each layer happens 
immediately after calculated. 

● Communication happens in the next (previous) layer 
gradient calculation.

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Parameter Sharding



Big Picture

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Measuring network efficiency





FLOP utilization

● FLOPs/s of operation ÷ FLOPs/s of accelerator
● Example: If H100 achieves 989 TFLOPS peak for 

BF16, but your model runs at 400 TFLOPS
Utilization = 400/989 ≈ 40%

● For LLM training, Model FLOPs Utilization (MFU) we 
usually aim for is around 50%-60%



Communication intensity

● Communication bytes ÷ (Memory / Network 
bandwidth bytes)

● Measures fraction of bandwidth used for inter-device 
communication

● Example: all-reduce gradient
○ Simplest form of parallelism
○ Must communicate 2×(N-1)/N × gradient_size bytes per 

iteration



Arithmetic Intensity

● Computation FLOPs ÷ Memory bytes accessed
● Measures compute per byte of memory traffic
● High arithmetic intensity

    = compute-bound (good!)
● Low arithmetic intensity 

    = memory-bound
● E.g. for H100:

○ Need >240 FLOPs/byte to be compute-bound with BF16



Matrix multiplication example

● Most computations in a transformer are just mat 
muls

● Consider multiplying two N×N matrices: 
○ FLOPs: 2N³ (in reality can be different due to blocking)
○ Memory read/write: 3N² elements
○ Arithmetic intensity (AI) = 2N³ ÷ (3N² × bytes per element)
○ N=1024, BF16: AI = 341 FLOPs/byte

■ Compute-bound for H100.



Sharded matrix multiplication (I)

● What if we sharded the matrices?
● Consider two NxN matrices distributed across M 

devices
● Device i holds



Sharded matrix multiplication (II)

Each device i needs to compute C[iN/M:(i+1)N/M, :]:

1. Local compute: Alocal × Blocal → C[i,i] block
2. Ring communication: Send Blocal, receive Bneighbor

3. Repeat M-1 times to compute all blocks of C’s rows



Sharded matrix multiplication (III)

● FLOPs per device: 2N³/M (perfectly scaled!)
● Memory per device: 2N²/M (input) + N²/M (output)
● Communication: (M-1) × N²/M elements = N²(M-1)/M
● Arithmetic intensity: 2N³/M ÷ N²(M-1) ≈ 2N/(M-1)

○ Decreases with more devices
○ Need larger N to maintain compute-bound operation



Some key numbers

● H100 BF16 Performance: 989 TFLOPS
● Transformer Training FLOPs: 6×N×T

○ N = number of parameters
○ T = number of tokens per step

● Intranode bandwidth (NVLink): 900 GB/s
● Internode bandwidth:

○ InfiniBand NDR: 400 Gbps = 50 GB/s
○ Ethernet alternatives: 100-400 Gbps typical



Forms of parallelism



Review: Adam

● Parameters: N
● Gradients: N
● Momentum: N
● 2nd order 

momentum: N
● Total: 4N 

parameters in memory
● + Activations + Data



Sharding

● Different slices of a tensor belong to different 
devices

● Example: Weight matrix W ∈ ℝM×N with 4 devices
○ Device 0: W[0:M/4, :]
○ Device 1: W[M/4:M/2, :]
○ Device 2: W[M/2:3M/4, :]
○ Device 3: W[3M/4:M, :]

● Key challenge: Managing communication when 
sharded tensors interact



ZeRO-1 Optimizer State Sharding

● Optimizer states (m, v from Adam) divided layerwise 
among devices

● Each device only maintains optimizer states for its 
assigned layers

● After computing gradients:
○ Device updates only its owned optimizer states
○ Broadcasts updated parameters to all devices



ZeRO-1 Optimizer State Sharding

https://huggingface.co/spaces/nanotron/ultrascale-playbook



All-Gather

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf



Reduce-Scatter

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf



ZeRO-1: Memory & Communication

● Memory: kΨ/N+2Ψ parameters per device 
● Communication: 

○ Same as data parallelism 
○ No additional communication overhead (q for class: why?)
○ Again we can hide this overhead in forward and backward 

computation



Note on ZeRO

● This was a bit confusing to me personally
● We need to differentiate between memory usage for 

all layers vs transient memory usage (i.e. for a single 
layer)

● (see whiteboard)



ZeRO-2: Optimizer+Gradient Sharding

● Gradients also sharded with same layout as 
optimizer states

● During backward:
○ Compute full gradients locally
○ Reduce-scatter to get sharded gradients
○ Each device keeps only gradients for its layers



ZeRO-2: Memory & Communication

● Memory: (k + 1)Ψ/N+Ψ parameters per device 
● Communication: 

○ Same as data parallelism 
○ No additional communication overhead 
○ We don’t need to get the gradients for other layers
○ Still communicate updated params

● Supported by DeepSpeed, Megatron-LM, PyTorch 
FSDP



ZeRO-3: Full Parameter Sharding

● Parameters also sharded layerwise across devices
● At layer L:

○ Before forward pass: All-gather parameters for this layer -> 
do forward computation (replicated)

○ After forward: Discard non-owned parameters
○ Before backward: All-gather parameters again -> do 

backward computation (replicated)
○ After backward: Do optimizer step + discard non-owned 

parameters



ZeRO-3 Tradeoffs

● Memory: (k+2)Ψ/N bytes per device
● Communication: 1.5X of DP

○ Prev: one all-gather in bwd pass
○ Now: one all-gather in fwd, one all-gather in bwd

● “Sharded parameters, replicated computation”



FSDP2

● Like ZeRO-3, but instead of sharding layerwise, 
shard across dim-0 of every param/grad/optimizer 
state tensor

● Easier conceptually to implement
● Natively integrated into PyTorch
● Can be integrated with smarter torch.compile.



Where we are now?

Still bottlenecked by activation memory (especially with long seq len)

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Activation Sharding



Tensor Parallelism

● Like ZeRO-3, but computation is also sharded
● Parameters stay on assigned devices
● Activations are all-reduced/all-gathered between 

devices as needed for computation
● How we choose to do the sharding strongly 

influences the computation/communication



Tensor Parallelism

● Consider MLP: Y = GeLU(XA) followed by Z = YB 
● Row-wise split of A:

○ Partition: X = [X₁, X₂], A = [A₁; A₂]
○ Result: Y = GeLU(X₁A₁ + X₂A₂)
○ Problem: GeLU(X₁A₁ + X₂A₂) ≠ GeLU(X₁A₁) + GeLU(X₂A₂)
○ Requires synchronization before GeLU, beating the point



Tensor Parallelism

● Consider MLP: Y = GeLU(XA) followed by Z = YB 
● Column-wise split of A:

○ Partition: A = [A₁, A₂]
○ Result: [Y₁, Y₂] = [GeLU(XA₁), GeLU(XA₂)]
○ GeLU applied independently - no sync needed!
○ Second GEMM: Split B row-wise to match
○ Only one all-reduce after second GEMM



Tensor Parallelism

From 
Megatron-LM
paper



Tensor Parallelism

From 
Megatron-LM
paper



Tensor Parallelism

From 
Megatron-LM
paper



Tensor Parallel Performance

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Huge Drop



Tensor Parallel Performance

● All-Reduce sits on the critical 
path during forward. 

● One node has 8 GPUs. 
● Cross-node comm is much 

slower than inter-node comm. 
(NvLink vs InfiniBand)

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Pipeline parallelism

● Model divided into stages (groups of layers)
● Each device owns one pipeline stage
● Data flows through devices sequentially
● Limitation: Device Idle

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Microbatch All Forward All Backward

● Micro-batching to reduce pipeline bubbles
● Reduce total computation time by m, number of 

microbatches
● Problem: Need to store all microbatch activations

https://huggingface.co/spaces/nanotron/ultrascale-playbook



1Forward 1Backward (Depth-First Scheduling)

● Prioritize backward pass over forward pass
● Immediate release activation memory after backward 

pass
● Still same time as AFAB, but more memory efficient

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Interleaved 1F1B

● Each GPU has more than one layer
● Computation circulating around GPUs
● Further reduce overall training time by n, number of 

layer each GPU has.

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Zero Bubble Pipeline/DualPipe

DeepSeek-V3 Technical Report: arxiv:2412.19437

https://arxiv.org/abs/2412.19437


Memory problem in training models

● Tensor parallelism
○ Help but introduces overhead

● Pipeline Parallelism
○ Doesn’t help if maintaining

device utility to avoid bubble

● Activation Recomputation



Activation Recomputation

● A.k.a. Gradient Checkpointing
● Select all/some layers’ output to save, then 

re-forward pass from closest “checkpoint”
● Trading off compute for saving memory



Activation 
Recomputation

Within-block activation
not saved

Redo forward pass from
last block’s output

Bottom figure from Megatron-LM



Reducing Activation Recomputation

● Three main components
○ Tensor Parallelism (Megatron-LM)
○ Sequence Parallelism
○ Selective Activation Recomputation

● where 2. and 3. Are orthogonal



Computing Activation Memory

● Setup/Notation

● Fp16 → each element takes 2 bytes, except dropout 
mask takes 1 byte

Table from 
Korthikanti et. al



Agenda: Computing Activation Memory

● Full Activation Recomputation (Lowest)
● Full Activation (Highest)
● w/ Tensor Parallelism
● w/ Sequence Parallelism
● w/ Selective Activation Recomputation



Full Activation Recomputation

● Memory (per layer): sbh(2)



Full Activation

Memory (per layer)



Tensor Parallelism

Memory (per layer)

Can we do 
better?



+ Sequence Parallelism

Main Observation – Those tensor-parallelism-excluded 
components are not sequence-dependent



+ Sequence Parallelism

Does it increase extra communication by all-gather + 
reduce-scatter? No, because ring all reduce = all-gather 
+ reduce-scatter



+ Sequence Parallelism

We are not yet achieving 10 / t



+ Sequence Parallelism

Memory (per layer)



+ Sequence Parallelism

Memory (per layer)

Can we do even 
better?



+ Selective Activation Recomputation

● Recompute the portion isn’t too expensive
● Trade-off those recomputation for better memory 

saving



Summary

● Tensor parallelism saves parallelized parts intuitively
● Sequence parallelism saves the rest (some trade-off)
● Selective Recomputation trades off compute for large 

memory reduction (s^2)
○ Pointer → FlashAttention solves this problem nowadays!



Evaluation

● The terms reduced matter! (linearly reducing the 10 
with number of devices)



Evaluation

● Select the right thing to recompute, introducing 
much less overhead (while saving much more 
memory)



Question

● Can we do even even better? What components 
discussed were not optimized yet?

● Can we do an analysis on overhead of recomputation 
(over components) and memory reduction to fit even 
smaller device?



Combined Parallelism in real world training

Training LLama3 in 16k GPUs

The Llama 3 Herd of Models, arxiv:2407.21783



Context Parallel

● In Data Parallelism, we shard activation (for attention and FFN) 
in alone batch dimension, how about long context training? 
Where we are unable to shard efficiently since batch size is 
small

● In Sequence Parallel, only the non-attention parts are sharded 
across devices. The attention part still remains the full 
sequence

● What about extremely long context (1M tokens) -> Context 
Parallel!!! Next Lecture!!



Expert Parallelism

● MoE layer contains multiple expert networks
● Example: 32 experts distributed across 8 GPUs (4 

experts/GPU)
● Tokens routed to different GPUs based on expert 

selection
● Each token typically activates k experts (e.g., k=2)



Expert Parallelism

● Conceptually still a form of model parallelism
● Differences

○ Requires specialized routing implementation
○ Dynamic load balancing challenges
○ Token dropping and auxiliary losses
○ Different communication patterns (all-to-all vs all-reduce)
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