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Problem Statement

e How to train a 405B model from scratch?
o How to train a smaller 1B model?
o How to scale the model size with multiple GPUs? (e.g. 16k)
o How to let the training run as fast as possible? Run fast
means keep the GPU doing matmul
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Calculating Memory Usage

Model Parameter: A-N Peak GPU Memory Usage
. ] Model parameters FP32 or BF16 w/o FP32 grad acc
Model Gradient: A-N = =
Optimizer State: 2A-N = s
70B 1120 GB
+ Activation + Data 405B 6480 GB

A. Bytes per parameter

We can only train 1B on single GPU!!

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Gradient Accumulation

e We training LLM in batches
o We will update the parameter every gbs (global batch size)

e During forward pass, we keep activation to calculate
gradient.

e We can calculate the mean of gradient to update the
parameter. (Parallel-Friendly)



Data Parallel
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GPU Communication: All-Reduce
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https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf




Data Parallel

e Each GPU perform mbs = gbs // num_gpus batches

e Result gradient are all-reduced (averaged). This can
be hidden in computations

e Each GPU update parameter independently.

e Training total batches faster with more GPUs.

e Still can’t train a 7B model since each GPU has full
model parameter.



Compute/Communication Overlap

e Gradient accumulation for each layer happens
immediately after calculated.

e Communication happens in the next (previous) layer
gradient calculation.

PzZiwydo

Forward

Backward

AllReduce Grads

GPU Computation:
Forward pass

GPU Communication: Backward pass

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Parameter Sharding
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Gradients

Y : Model parameters
k : Optimizer multiplier
N; Data parallel degree



Measuring network efficiency



How to Scale Your
Model

A Systems View of LLMs on TPUs

Training LLMs often feels like alchemy, but understanding
and optimizing the performance of your models doesn't have
to. This book aims to demystify the science of scaling
language models: how TPUs (and GPUs) work and how they
communicate with each other, how LLMs run on real
hardware, and how to parallelize your models during training
and inference so they run efficiently at massive scale. If
you've ever wondered “how expensive should this LLM be to
train” or “how much memory do | need to serve this model
myself” or “what's an AllGather”, we hope this will be useful to
you.
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FLOP utilization

e FLOPs/s of operation + FLOPs/s of accelerator

e Example: If HT00 achieves 989 TFLOPS peak for
BF16, but your model runs at 400 TFLOPS
Utilization = 400/989 =~ 40%

e For LLM training, Model FLOPs Utilization (MFU) we
usually aim for is around 50%-60%



Communication intensity

e Communication bytes + (Memory / Network
bandwidth bytes)

e Measures fraction of bandwidth used for inter-device
communication
e Example: all-reduce gradient

o Simplest form of parallelism

o Must communicate 2x(N-1)/N x gradient_size bytes per
iteration



Arithmetic Intensity

e Computation FLOPs + Memory bytes accessed
e Measures compute per byte of memory traffic
e High arithmetic intensity

= compute-bound (good!)
e Low arithmetic intensity

= memory-bound

e E.g. for H100:
o Need >240 FLOPs/byte to be compute-bound with BF16



Matrix multiplication example

e Most computations in a transformer are just mat
muls

e Consider multiplying two NxN matrices:
o FLOPs: 2N3 (in reality can be different due to blocking)
o Memory read/write: 3N? elements
o Arithmetic intensity (Al) = 2N3 = (3N2 x bytes per element)
o N=1024, BF16: Al = 341 FLOPs/byte
m Compute-bound for H100.



Sharded matrix multiplication (l)

e What if we sharded the matrices?

e Consider two NxN matrices distributed across M
devices

e Device i holds

AtN/M : (i+ 1)N/M,:| — N/M rows of A
B|:,iN/M : (i + 1)N /M| — N/M columns of B



Sharded matrix multiplication (lI)

Each device i needs to compute C[iN/M:(i+1)N/M, :]:

1. Local compute: A X B Cli,i] block
2. Ring communication: Send B,___, receive B cighbor
3. Repeat M-1 times to compute all blocks of C’s rows



Sharded matrix multiplication (lI)

FLOPs per device: 2N3/M (perfectly scaled!)

Memory per device: 2N2/M (input) + N2/M (output)
Communication: (M-1) x N2/M elements = N2(M-1)/M
Arithmetic intensity: 2N3/M + N2(M-1) = 2N/(M-1)

o Decreases with more devices

o Need larger N to maintain compute-bound operation



Some key numbers

e H100 BF16 Performance: 989 TFLOPS
e Transformer Training FLOPs: 6 xNxT
o N = number of parameters
o T = number of tokens per step
e Intranode bandwidth (NVLink): 900 GB/s
e Internode bandwidth:
o InfiniBand NDR: 400 Gbps = 50 GB/s
o Ethernet alternatives: 100-400 Gbps typical



Forms of parallelism



Review: Adam

e Parameters: N m; = Bimy_1 + (1 — B1)gs
e Gradients: N
e Momentum: N vy = Bovs_1 + (1 — ﬂz)gf
e 2nd order
momentum: N my =my/(1 — ,Bi)
e Total: 4N A ;
parameters in memory U = vt /(1 — By)

e + Activations + Data

9t:9t—1—a°’fht/(\/’9\t+€)



Sharding

e Different slices of a tensor belong to different
devices

e Example: Weight matrix W € R™N with 4 devices
o Device 0: W[0:M/4, ]
o Device 1: WM/4:M/2, :]
o Device 2: WM/2:3M/4, 1]
o Device 3: W[3M/4:M, :]

e Key challenge: Managing communication when
sharded tensors interact




ZeRO-1 Optimizer State Sharding

e Optimizer states (m, v from Adam) divided layerwise

among devices
e Each device only maintains optimizer states for its

assigned layers

e After computing gradients:
o Device updates only its owned optimizer states
o Broadcasts updated parameters to all devices



ZeRO-1 Optimizer State Sharding

Forward pass

Backward pass

Reduce-scatter

Optimizer step

All-gather

Forward pass (next)

https://huggingface.co/spaces/nanotron/ultrascale-playbook



All-Gather

Before

After

https://hao-ai-lab.github.io/cse234-w25/assets/slides/feb13.pdf




Reduce-Scatter

Before
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/eRO-1: Memory & Communication

e Memory: kW/N+2W parameters per device

e Communication:
o Same as data parallelism
o No additional communication overhead (q for class: why?)
o Again we can hide this overhead in forward and backward
computation



Note on ZeRO

e This was a bit confusing to me personally

e We need to differentiate between memory usage for
all layers vs transient memory usage (i.e. for a single
layer)

e (see whiteboard)



ZeRO-2: Optimizer+Gradient Sharding

e Gradients also sharded with same layout as
optimizer states

e During backward:
o Compute full gradients locally
o Reduce-scatter to get sharded gradients
o Each device keeps only gradients for its layers



/eR0O-2: Memory & Communication

e Memory: (k + 1)¥Y/N+W parameters per device

¢ Communication:

o Same as data parallelism

o No additional communication overhead

o We don’t need to get the gradients for other layers
o Still communicate updated params

e Supported by DeepSpeed, Megatron-LM, PyTorch
FSDP



ZeRO-3: Full Parameter Sharding

e Parameters also sharded layerwise across devices
e At layer L:
o Before forward pass: All-gather parameters for this layer ->
do forward computation (replicated)
o After forward: Discard non-owned parameters
o Before backward: All-gather parameters again -> do
backward computation (replicated)
o After backward: Do optimizer step + discard non-owned
parameters



ZeRO-3 Tradeoffs

e Memory: (k+2)¥W/N bytes per device

e Communication: 1.5X of DP

o Prev: one all-gather in bwd pass
o Now: one all-gather in fwd, one all-gather in bwd

e “Sharded parameters, replicated computation’



FSDP2

e Like ZeRO-3, but instead of sharding layerwise,
shard across dim-0 of every param/grad/optimizer
state tensor

e Easier conceptually to implement

e Natively integrated into PyTorch

e (Can be integrated with smarter torch.compile.



Where we are now?

Memory Usage for 8B Model
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Still bottlenecked by activation memory (especially with long seq len)
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Activation Sharding



Tensor Parallelism

e Like ZeRO-3, but computation is also sharded

e Parameters stay on assigned devices

e Activations are all-reduced/all-gathered between
devices as needed for computation

e How we choose to do the sharding strongly
influences the computation/communication



Tensor Parallelism

e Consider MLP: Y = GeLU(XA) followed by Z = YB

e Row-wise split of A:
Partition: X = [Xi, Xz], A = [A:; A]
Result: Y = GeLUOGA + X2A»)
Problem: GeLUXiA: + XzA:) = GeLU(X:A1) + GeLU(X:A>)
Requires synchronization before GelLU, beating the point



Tensor Parallelism

e Consider MLP: Y = GeLU(XA) followed by Z = YB

e Column-wise split of A:
Partition: A = [A, A,]
Result: [Y1, Y:] = [GeLUXA/), GeLU(XA,)]
GeLU applied independently - no sync needed!
Second GEMM: Split B row-wise to match
Only one all-reduce after second GEMM



Tensor Parallelism
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Tensor Parallelism

clagss f(torch.auteograd.Function) :
def forward(ctx, Xx):
return X
def backward(ctx, gradient) :
all_reduce (gradient)
return gradient

Code 1. Implementation of f operator. g is similar to f with
identity in the backward and all-reduce in the forward
functions.

From
Megatron-LM

paper



Tensor Parallelism

Self-Attention(X)
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Tensor Parallel Performance

Throughput Scaling with TP (3B Model)

| -10.8%

J-12.2% Huge Drop

10k

5k

Tokens/sec/GPU

4 8 16 32

Tensor Parallelism (TP)

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Tensor Parallel Performance

e All-Reduce sits on the critical
path during forward.

e One node has 8 GPUs. |

e Cross-node comm is much ] T
slower than inter-node comm. GPu computation: |

(NvLink vs InfiniBand) Py Communicaton: )

https://huggingface.co/spaces/nanotron/ultrascale-playbook



Pipeline parallelism

GPU

Model divided into stages (groups of layers)
Each device owns one pipeline stage

Data flows through devices sequentially
Limitation: Device Idle

b W -

13141516 16 15 14 13

Time ———»

https://huggingface.co/spaces/nanotron/ultrascale-playbook

Device idle




Microbatch All Forward All Backward

e Micro-batching to reduce pipeline bubbles
e Reduce total computation time by m, number of
microbatches

e Problem: Need to store all microbatch activations
GPU

12345678
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172345678 1 91011121314151%6 9 10

A W N =

Time ——» Device idle

i
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1 Forward 1Backward (Depth-First Scheduling)

e Prioritize backward pass over forward pass
e Immediate release activation memory after backward
pass

e Still same time as AFAB, but more memory efficient
GPU

152637485. I7I89101112 13 10

1234- I253647586I I -9101112- l101311

12341. I354657687I 91011129. I1113

A WoNn =
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Time ———» Backward pass Device idle
https://huggingface.co/spaces/nanotron/ultrascale-playbook




Interleaved 1F1B

e Each GPU has more than one layer

e Computation circulating around GPUs

e Further reduce overall training time by n, number of
layer each GPU has.

511627384

101E:5%-0:8
1234I1I2I3|45IGI7.8

. : Forward pass Backward pass
Time (first layers) (first layers) Devica it
cale-playboo

https://huggingface.co/spaces/nanotron/ultras




Zero Bubble Pipeline/DualPipe

DeepSeek-V3 Technical Report: arxiv:2412.19437



https://arxiv.org/abs/2412.19437

Memory problem in training models

e Tensor parallelism
o Help but introduces overhead
e Pipeline Parallelism
o Doesn’t help if maintaining
device utility to avoid bubble

e Activation Recomputation




Activation Recomputation

e A.k.a. Gradient Checkpointing

e Select all/some layers’ output to save, then
re-forward pass from closest “checkpoint”

e Trading off compute for saving memory



Activation
Recomputation

Within-block activation
not saved

Redo forward pass from
last block’s output

Bottom figure from Megatron-LM

Activation Recomputation

Redo Forward Pass
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Reducing Activation Recomputation

e Three main components

o Tensor Parallelism (Megatron-LM)
o Sequence Parallelism
o Selective Activation Recomputation

e where 2. and 3. Are orthogonal



Computing Activation Memory

e Setup/Notation Table from
Korthikanti et. al

number of attention heads p | pipeline parallel size
microbatch size s | sequence length
hidden dimension size t | tensor parallel size
number of transformer layers v | vocabulary size

N o ©

e Fpl16 — each element takes 2 bytes, except dropout
mask takes 1 byte



Agenda: Computing Activation Memory

Full Activation Recomputation (Lowest)
Full Activation (Highest)

w/ Tensor Parallelism

w/ Sequence Parallelism

w/ Selective Activation Recomputation



Full Activation Recomputation

e Memory (per layer): sbh(2)
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Self Attention = sbh(8) + 5a(sA2)b

Full Activation - o head) o1 (QKAT) * b *2 (ytes
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Tensor Parallelism

Memory (per layer)

sbh
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+ Sequence Parallelism

Main Observation - Those
components are not sequence-dependent

Forward Pass —

All gather Reduce-scatter

______
(
I
i I
3 AE]
5 S5 2=
R e
= I &
= I
I
] ] |
g ' '
SequenceI ' Tensor ] Sequence | Sequence
] ]
Parallel | N Parallel v\ Parallel '\ Parallel
>4 ' > A S < ]

Reduce-scatter All gather

< Backward Pass



+ Sequence Parallelism

Does it increase extra communication by all-gather +
reduce-scatter? No, because ring all reduce = all-gather

+ reduce-scatter o ard Pace ;
All gather Reduce-scatter
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+ Sequence Parallelism

We are not yet achieving

Solution: save only the i-th (sequence-wise) proportion on device. Then,
introduce an additional all-gather to gather all sequence-wise proportions
in backward pass. (overlap the communication with gradient calculation)

/—> Each device is still getting Full Input (sequence portion)!
All gather Reduce-scatter
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+ Sequence Parallelism

Self Attention = sbh(2)/t + (1/t) * (6sbh + 5a(sA2)b)

I Require additional all-gather a (num heads) * sA2 (QKAT) * b * 2 (bytes)
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+ Sequence Parallelism

Memory (per layer)
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+ Selective Activation Recomputation

e Recompute the portion isn’t too expensive
e Trade-off those recomputation for better memory

saving
Self Attention = (1/t) * (6sbh + bater2h)

Require additional all-gather a (num heads) * sA2 (QKAT) * b * 2 (bytes)
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Summary

e Tensor parallelism saves parallelized parts intuitively
e Sequence parallelism saves (some trade-off)
e Selective Recomputation trades off compute for large
memory reduction (sA2)
o Pointer — FlashAttention solves this problem nowadays!



Evaluation

e The terms reduced matter! (linearly reducing the 10
with number of devices)
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Evaluation

e Select the right thing to recompute, introducing

much less overhead (while saving much more

memory)

Experiment | Forward (ms) | Backward (ms) | Combined (ms) | Overhead (%)
Baseline no recompute () 11.9 19.6 —_
Sequence Parallelism 7.2 11.8 19.0 —3%
Baseline with recompute 7.7 19.5 27.2 39%
Selective Recompute 7.7 13.2 20.9 7%
Selective + Sequence 72 13.1 20.3 4%

Table 4: Time to complete the forward and backward pass of a single transformer layer of the 22B

model.



Question

e Can we do even even better? What components
discussed were not optimized yet?

e Can we do an analysis on overhead of recomputation
(over components) and memory reduction to fit even
smaller device?



Combined Parallelism in real world training
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Training LLama3 in 16k GPUs

The Llama 3 Herd of Models, arxiv:2407.21783



Context Parallel

In Data Parallelism, we shard activation (for attention and FFN)
in alone batch dimension, how about long context training?
Where we are unable to shard efficiently since batch size is
small

In Sequence Parallel, only the non-attention parts are sharded
across devices. The attention part still remains the full
sequence

What about extremely long context (1M tokens) -> Context
Parallel!!! Next Lecture!!



Expert Parallelism

e MoE layer contains multiple expert networks

e Example: 32 experts distributed across 8 GPUs (4
experts/GPU)

e Tokens routed to different GPUs based on expert
selection

e Each token typically activates k experts (e.g., k=2)



Expert Parallelism

e Conceptually still a form of model parallelism

e Differences
o Requires specialized routing implementation
o Dynamic load balancing challenges
o Token dropping and auxiliary losses
o Different communication patterns (all-to-all vs all-reduce)
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