Kaleidoscope: An Efficient, Learnable Representation For All Structured Linear Maps

Tri Dao, Nimit Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri Rudra, Christopher Ré

Structured linear maps with kaleidoscope matrices

- Structured linear maps (low-rank, sparse, DFT, conv...): ubiquitous in ML
- Challenge: they are hand picked
 → don't adapt to data, requires domain knowledge
- This talk:
 - Building on theory: how to learn a universal family, Kaleidoscope matrices
 - Applications: improved CNN channel shuffle, simplified speech pipeline...

Structured linear maps are ubiquitous in ML

You've heard of them before...

- + Fast algorithms
- + Few parameters
- Some approximation

Picking the right structure:

 \rightarrow good tradeoff for memory and speed

Hand-picked structured linear maps are ubiquitous in ML

But they're not easy to pick...

Challenges:

Doesn't adapt to data

• Requires domain knowledge

Goals:

- Learnable, integrate with end-to-end ML pipeline
- Expressive family to automate design choices

• Different implementations

 Single efficient implementation, ↓ engineering effort

Is there a learnable, expressive, efficient representation for all structured linear maps?

Universal Representation for Structure: Outline

 Background: How to parameterize structured linear maps? Fast algorithm ↔ Sparse matrix factorization Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient Capture all structured linear maps (nearly tight # param. & run time).

Universal Representation for Structure

Background: How to parameterize structured linear maps?
 Fast algorithm ↔ Sparse matrix factorization
 Butterfly matrices

2. Kaleidoscope matrices: **learnable** end-to-end, **expressive**, **and efficient** Capture **all** structured linear maps (nearly tight # param. & run time).

Sparse factorization → Fast algorithm

Complexity: O(total nnz of factorization)

Fast algorithm \rightarrow Sparse factorization

Any A that has algorithm for A x with S arithmetic operations (e.g. add/mult)

Factorization with total nnz O(S)

[Burgisser et al., 2013; De Sa et al., 2018]

De Sa, C., Gu, A., Puttagunta, R., Ré, C., Rudra, A. A Two-Pronged Progress in Structured Dense Matrix Vector Multiplication. SODA, 2018.

Universal Representation for Structure: Outline

Background: How to parameterize structured linear maps?

 Fast algorithm ↔ Sparse matrix factorization
 Butterfly matrices
 Kaleidoscope matrices: learnable end-to-end, expressive, and efficient

Capture all structured linear maps (nearly tight # param. & run time).

Divide-and-Conquer → Butterfly matrices

[Parker, 1995; Matthieu & LeCun, 2014; Dao et al., 2019]

Recursive divide-and-conquer

[De Sa et al., 2018]

• Trainable with gradient descent on nonzero entries of butterfly matrix.

Captures recursive divide-and-conquer structure

Universal Representation for Structure

Background: How to parameterize fast linear maps?
 Fast algorithm ↔ Sparse matrix factorization
 Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient Capture all structured linear maps (nearly tight # param. & run time).

Kaleidoscope: Learnable structured matrices

Deep composition of butterfly matrices: $B^{(1)}B^{(2)T}B^{(3)}B^{(4)T}B^{(5)}B^{(6)T}...$

Butterfly matrix: Fixed sparsity

Learnable with gradient descent on nonzero entries of butterfly matrices.

Kaleidoscope hierarchy: Tunable knob

Deep composition of butterfly matrices: $B^{(1)}B^{(2)T}B^{(3)}B^{(4)T}B^{(5)}B^{(6)T}...$

From very compressed $(BB^T)^{O(1)}$ to general matrices $(BB^T)^{O(N)}$

Kaleidoscope hierarchy: Expressiveness

Matrix	Min params / FLOPs	Butterfly params / FLOPs	
DFT, DCT, Hadamard, Conv	$\Theta(N \log N)$	$O(N \log N)$	
Permutation	$\Theta(N\log N)$	$O(N \log N)$	
s-Sparse	$\Theta(s)$	$O(s \log N)$	
Rank r	$\Theta(rN)$	$O(rN\log N)$	
Arithmetic circuit (s total gates, depth d)	$\Theta(s)$	$O(ds \log s)$	
Main theory result [informal]:			
Any matrix with a fas multiplication algorith (i.e. small arithmetic circ	t Ka m H Ka cuit) wit	leidoscope matrix representation th few parameters	

Captures all fast linear maps with almost tight parameter count / FLOPs (up to log factor)

Efficiency

• Each butterfly: 2N log N parameters, O(N log N) multiplication algorithm

Efficiency

• Each butterfly: 2N log N parameters, O(N log N) multiplication algorithm

Practically efficient in memory and speed

Universal Representation for Structure

Background: How to parameterize fast linear maps?
 Fast algorithm ↔ Sparse matrix factorization
 Butterfly matrices

2. Kaleidoscope matrices: **learnable** end-to-end, **efficient** and **expressive** Capture **all** structured linear maps (nearly tight # param. & run time).

Replacing hand-crafted CNN channel shuffle

Replacing hand-crafted CNN channel shuffle

Image classification results on ImageNet (1.3M images)

Model	# Params	ImageNet top-1 accuracy
0.5x width ShuffleNet 0.5x width ShuffleNet w/ Kaleidoscope	1.0M 1.1M	57.1% 59.5%
ShuffleNet ShuffleNet w/ Kaleidoscope	2.5M 2.8M	65.3%1-2%66.5%improvement

Replacing fixed channel shuffle with learnable Kaleidoscope matrices improves accuracy

Simplified speech preprocessing pipeline

Kaleidoscope matrices to replace complicated, handengineered preprocessing pipelines

Standard Filter bank/MFSC features

Kaleidoscope pipeline is competitive with MFSC

Phoneme error rate on TIMIT speech recognition dataset (lower is better)

Model	# Params	Phone	me Error Rate
MFSC + LSTM	14.3M	14.2%	
Kaleidoscope + LSTM	15.5M	14.6%	0.4% gap

Much simpler kaleidoscope pipeline is competitive with hand-crafted preprocessing

Universal Representation for Structure: Summary

 Background: How to parameterize structured linear maps? Fast algorithm ↔ Sparse matrix factorization Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient Capture all structured linear maps (nearly tight # param. & run time).

Thank you! Questions?

- Code available at: https://github.com/HazyResearch/butterfly/
- Blog post (gentle introduction): <u>https://dawn.cs.stanford.edu/2019/06/13/butterfly/</u>

Tri Dao trid@stanford.edu