Monarch: Expressive Structured Matrices for Efficient and Accurate Training
Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu, Aniruddh Rao, Atri Rudra, Christopher Ré

Stanford University
University at Buffalo

Sparse Training for Large Models
- Challenges with structured linear maps (low-rank, sparse, Fourier):
 - Sparse end-to-end training
 - Dense-to-sparse finetuning

- Efficiency-quality tradeoffs:
 1. Efficiency: on modern hardware (GPU)
 2. Quality: how expressive are the weight matrices (can they represent commonly used transforms)

Monarch Matrices: Efficient and Expressive
- 1. Hardware-efficient: Block-diagonal leverages efficient batch-matrix-multiply on GPU.
- 2. Expressive: contains butterfly matrices (and Fourier, DST, DCT, convolution, Hadamard, etc.)
- 3. Tractable projection: find a Monarch matrix closest to a given dense matrix.

Three Ways to Use Sparse Models
- Sparse E2E Training
- Sparse-to-Dense Training
- D2S Fine-tuning

Results: Monarch speeds up training from scratch and Finetuning

Sparse-to-Dense Training
- Sparse E2E Training
- Dense E2E Training

Dense-to-sparse Finetuning
- Replace dense weight matrices (e.g., attention & FFN) with Monarch matrices for efficiency.

Sparse End-to-End Training
- Pretrained dense model
- Monarch Projection

Implementation
- BERT-large training time on 8xA100s (h)

- HuggingFace: 84.5
- MegaTron: 52.5
- Nvidia MLPerf 1.1: 30.2
- Monarch: 23.8

Dense-to-sparse finetuning
- BERT-large: 80.4
- Monarch BERT-large: 79.6

Up to 3.5x training speedup without performance loss.