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● Scaling laws predict the model performance using a power-law when one of 
model size, dataset size, or compute budget varies
○ Early exploration of efficient (conv-)nets

■ Tan, Mingxing, and Quoc Le. "Efficientnet: 
Rethinking model scaling for 
convolutional neural networks." 
International conference on machine 
learning. PMLR, 2019.

What is scaling laws and why do we need them
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What is scaling laws and why do we need them

● Scaling laws predict the model performance using a power-law when one of 
model size, dataset size, or compute budget varies
○ Early exploration of efficient (conv-)nets
○ What’s a general recipe to scale model up for arbitrary tasks?

■ Transformers, autoregressive language modeling
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Overview

● Scaling Laws for Neural Language Models (Kaplan scaling law)

● Training Compute-Optimal Large Language Models (Chinchilla scaling law)

● Language Models are Few-Shot Learners (GPT3)



Kaplan Scaling Law (TL;DR)

● 10× increase in compute should be allocated to a 5.5× increase in model size 
and a 1.8× increase in training tokens

● large models should not be trained to their lowest possible loss to be compute 
optimal

(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 4 by Sanjeev Arora)



Kaplan Scaling Law (TL;DR)

1. Performance depends strongly on scale, 
weakly on model shape

2. Smooth power laws
3. Universality of overfitting
4. Universality of training
5. Transfer improves with test performance

1. .
2. .
3. .
4. .
5. .
6. Sample efficiency
7. Convergence is inefficient
8. Optimal batch size



Kaplan Scaling Law (training setup)

● Model: decoder-only transformer
● Dataset: WebText
● BPE tokenizer, context length = 1024
● Compute for forward pass:
● Estimated non-embedding compute per training token:
● LR schedule with a 3000 step linear warmup followed by a cosine decay to 0

○ Convergence were largely independent of learning rate schedule



Kaplan Scaling Law (basic power law)

Varying factors:

1. Model size (from 768 to 1.5B non-embedding params)
2. Dataset size (from 22M to 23B tokens)
3. Shape (depth, width, attention heads, FFN dimension)
● Context length (mostly 1024)
● Batch size (mostly 2^19)



Kaplan Scaling Law (basic power law)

1. Model size

Performance depends strongly on # layers when embedding parameters are included

Performance converges to a single trend when embedding params are excluded



Kaplan Scaling Law (basic power law)

1. Model size

Steady trend with non-embedding parameter count N, which can be fit into



Kaplan Scaling Law (basic power law)
1.
2. Dataset size and Compute

Similar trend for dataset size D and compute C

Non-embedding compute is estimated as C=6NBS
Results in the plots have B (batch size) fixed so are not meant to be optimal 



Kaplan Scaling Law (simultaneous dependence formulation)

● Proposed parameterization for model size and dataset size

under 3 principles:

1. Changes in vocab size / tokenization rescale the loss by an overall factor
2. Approach L(N) with fixed N and D -> ∞ and approach L(D) with fixed D and N -> ∞
3. L(N,D) should be analytic at D = ∞ so that it has a series expansion in 1/Dwith integer powers 

(more speculative)



Kaplan Scaling Law (simultaneous dependence results)

● Left: For large D, performance is a straight power law in N
● Right: The extent of overfitting depends predominantly on the ratio 



Kaplan Scaling Law (simultaneous dependence formulation)

● There exists a critical batch size s.t. up to this batch size can be increased with 
very minimal degradation in compute-efficiency, which can be predicted using 
gradient noise scale, defined as 

Minimum # data to be processed

Minimum # training steps to achieve L



Kaplan Scaling Law (simultaneous dependence formulation)

● The critical batch size can be fit with a power-law in the loss



Kaplan Scaling Law (simultaneous dependence formulation)

● Use the critical batch size to estimate the relation between # training steps 
with batch size 2^19



Kaplan Scaling Law (simultaneous dependence formulation)

● Fit to



Kaplan Scaling Law (simultaneous dependence formulation)

● More efficient training at the critical batch size



Kaplan Scaling Law (simultaneous dependence formulation)

● The optimal number of steps will only grow very slowly with compute



● At larger scales, the performance predicted by the L(C_min) scaling law 
decreases below what should be possible given the slow growth in training 
data with compute
○ Potential implication: an estimate of the point at which Transformer language models reach its 

maximal performance

Kaplan Scaling Law (contradiction)



Recap: Kaplan Scaling Law

● 10× increase in compute should be allocated to a 5.5× increase in model size 
and a 1.8× increase in training tokens

● large models should not be trained to their lowest possible loss to be compute 
optimal



Chinchilla Scaling Law

● 10× increase in compute should be allocated to a 5.5× increase in model size 
and a 1.8× increase in training tokens

● large models should not be trained to their lowest possible loss to be compute 
optimal

“for compute-optimal training, the model size and the 
number of training tokens should be scaled equally”



Chinchilla Scaling Law (TL;DR)

● Large models should be substantially smaller and therefore trained much 
longer than is previously done according to the Kaplan scaling law, i.e. a lot of 
models are undertrained



Chinchilla Scaling Law (TL;DR)

● Given a fixed FLOPs budget, how should one trade-off model size and the 
number of training tokens?



Chinchilla Scaling Law (Approach 1)

● Fix model sizes and vary number of training tokens
○ Train models (from 70M to > 10B params) for 4 different training sequences
○ Obtain a continuous mapping from FLOP count to training loss for each run
○ For each FLOP, determine the run that achieves the lowest loss
○ Find the model size that achieves the lowest loss with the required # training tokens
○ Fit power law to estimate the optimal model size and # training tokens for a given compute



Chinchilla Scaling Law (Approach 2)

● IsoFLOP profiles
○ Vary the model size for a fixed set of 9 different training FLOP counts (from 6*10^18 to 3*10^21 

FLOPs) and monitor the final training loss
○ Plot the final loss against the param count for each FLOP budget to obtain the IsoFLOP curves
○ Fit a parabola to estimate the model size where the minimum loss is achieved
○ Fit a power law between FLOPs and model size and # training tokens



Chinchilla Scaling Law (Approach 3)

● Fitting a parametric loss function

○ E: Entropy of natural text
○ Second term: transformer of size N underperforms the ideal generative process
○ Last term: transformer is not trained to convergence due to finite optimization steps and dataset 

samples



Chinchilla Scaling Law (Approach 3)

● Minimize the loss under the constraint 



Chinchilla Scaling Law (Summary of estimations)



Chinchilla Scaling Law (Findings)

● Models (Gopher, GPT-3, Megatron-Turing NLG etc.) are largely over-sized / 
under-trained

● Smaller models should have been trained on more tokens to achieve the best 
performance



Chinchilla Scaling Law (Chinchilla, training)

● Same architecture and setup as Gopher except:
○ Use a slightly different subset distribution of MassiveText to account for the increased # training 

tokens
○ Use AdamW for better downstream performance
○ Use a slightly modified SentencePiece tokenizer and no NFKC normalization for better 

representation of math and chemistry
○ Forward and backward passes are computed in bfloat16 while storing a float32 copy of weights 

in the distributed optimizer states



Chinchilla Scaling Law (Chinchilla, results)

● Language modeling
○ Show a consistent decrease in bits-per-byte (bpb) of Chinchilla compared to Gopher on all 

subsets of The Pile
○ Chinchilla is trained on 4×more data than Gopher and there may be data contamination



Chinchilla Scaling Law (Chinchilla, results)

● MMLU
○ Except on 4 tasks (college_mathematics, econometrics, moral_scenarios, and formal_logic), 

Chinchilla outperforms Gopher

● Similar trend on BIG-bench





Chinchilla Scaling Law (Chinchilla, results)

● Reading comprehension

● Common sense: PIQA, SIQA, Winogrande, HellaSwag, BoolQ



Chinchilla Scaling Law (Chinchilla, results)

● Closed-book QA



Chinchilla Scaling Law (Chinchilla, results)

● Gender bias and toxicity
○ Generally overcome gender stereotypes
○ Negligible effect on toxic text generation
○ Toxicity levels in unconditional text generation are largely independent of the model quality



Recap: Chinchilla Scaling Law

● For compute-optimal training, the model size and the number of training 
tokens should be scaled equally

● Large models should be substantially smaller and therefore trained much 
longer, i.e. a lot of models are undertrained



GPT-3 (TL;DR)

● An autoregressive language model of 175B parameters, 10x larger than any 
previous LMs

● Introduced the concept of “in-context learning”, and showed competitive 
performance
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