Week 2 - Sep 9: Scaling laws: why

foundation models are large

Catherine Cheng



The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are
ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization
of continued exponentially falling cost per unit of computation. Most Al research has been conducted as if the computation
available to the agent were constant (in which case leveraging human knowledge would be one of the only ways to
improve performance) but, over a slightly longer time than a typical research project, massively more computation
inevitably becomes available. Seekingian improvement that makes a difference in the shorter term, researchers seek to
leverage their human knowledge of the domain, but the only thing that matters in the long run is the leveraging of
computation. These two need not run counter to each other, but in practice they tend to. Time spent on one is time not
spent on the other. There are psychological commitments to investment in one approach or the other. And the human-
knowledge approach tends to complicate methods in ways that make them less suited to taking advantage of general
methods leveraging computation. There were many examples of Al researchers' belated learning of this bitter lesson, and
it is instructive to review some of the most prominent.
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One thing that should be learned from the bitter lesson is the great power of general purpose methods, of methods
that continue to scale with increased comﬁ?taﬁon even as the available computation becomes very great. The two
methods that seem to scale arbitrarily in this way are search and learning.



What is scaling laws and why do we need them

Scaling laws predict the model performance using a power-law when one of
model size, dataset size, or compute budget varies

O

Early exploration of efficient (conv-)nets

Tan, Mingxing, and Quoc Le. "Efficientnet:
Rethinking model scaling for
convolutional neural networks."
International conference on machine
learning. PMLR, 2019.

In this paper, we propose a new compound scaling method,
which use a compound coefficient ¢ to uniformly scales
network width, depth, and resolution in a principled way:

depth: d = o?
width: w = %
resolution: r = % (3)

st.a-f2-42~2
a>1,8>1v>1

where «, 3, are constants that can be determined by a
small grid search. Intuitively, ¢ is a user-specified coeffi-



What is scaling laws and why do we need them

e Scaling laws predict the model performance using a power-law when one of

model size, dataset size, or compute budget varies
o  Early exploration of efficient (conv-)nets
o  What’s a general recipe to scale model up for arbitrary tasks?
m Transformers, autoregressive language modeling



Overview

e Scaling Laws for Neural Language Models (Kaplan scaling law)

e Training Compute-Optimal Large Language Models (Chinchilla scaling law)



Kaplan Scaling Law (TL;DR)

e 10x increase in compute should be allocated to a 5.5% increase in model size
and a 1.8x increase in training tokens
e |large models should not be trained to their lowest possible loss to be compute
optimal
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Kaplan Scaling Law (TL;DR)

ok wWwN

Performance depends strongly on scale,
weakly on model shape

Smooth power laws

Universality of overfitting

Universality of training

Transfer improves with test performance

6.
7.
8.

Sample efficiency
Convergence is inefficient
Optimal batch size



Kaplan Scaling Law (training setup)

Model: decoder-only transformer

Dataset: Weblext

BPE tokenizer, context length = 1024

Compute for forward pass: Ciorward ® 2N + 2N1ayerNctx@model

Estimated non-embedding compute per training token: C ~ 6N

LR schedule with a 3000 step linear warmup followed by a cosine decay to O
o Convergence were largely independent of learning rate schedule



Kaplan Scaling Law (basic power law)

Varying factors:

1. Model size (from 768 to 1.5B non-embedding params)
2. Dataset size (from 22M to 23B tokens)

3. Shape (depth, width, attention heads, FFN dimension)
e Context length (mostly 1024)

e Batch size (mostly 2*19)



Kaplan Scaling Law (basic power law)

1. Model size

Performance depends strongly on # layers when embedding parameters are included

Performance converges to a single trend when embedding params are excluded
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Kaplan Scaling Law (basic power law)

1. Model size

Steady trend with non-embedding parameter count N, which can be fit into
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Kaplan Scaling Law (basic power law)

2. Dataset size and Compute

Similar trend for dataset size D and compute C
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Non-embedding compute is estimated as C=6NBS
Results in the plots have B (batch size) fixed so are not meant to be optimal



Kaplan Scaling Law (simultaneous dependence formulation)

e Proposed parameterization for model size and dataset size

L(N,D) = [(%) & + %] "

under 3 principles:

1. Changes in vocab size / tokenization rescale the loss by an overall factor

2. Approach L(N) with fixed N and D -> « and approach L(D) with fixed D and N -> o«

3.  L(N,D) should be analytic at D = « so that it has a series expansion in 1/Dwith integer powers
(more speculative)



Kaplan Scaling Law (simultaneous dependence results)

e Left: For large D, performance is a straight power law in N
e Right: The extent of overfitting depends predominantly on the ratio N%/D

Data Size Bottleneck
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We estimate that the variation in the loss with different random seeds is roughly 0.02, which means that to
avoid overfitting when training to within that threshold of convergence we require
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Kaplan Scaling Law (simultaneous dependence formulation)

e There exists a critical batch size s.t. up to this batch size can be increased with
very minimal degradation in compute-efficiency, which can be predicted using
gradient noise scale, defined as

j - Minimum # data to be processed

o j—_— Minimum # training steps to achieve L



Kaplan Scaling Law (simultaneous dependence formulation)

e The critical batch size can be fit with a power-law in the loss

Critical Batch Size vs. Performance
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Kaplan Scaling Law (simultaneous dependence formulation)

e Use the critical batch size to estimate the relation between # training steps
with batch size 2™9
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Kaplan Scaling Law (simultaneous dependence formulation)
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Kaplan Scaling Law (simultaneous dependence formulation)

e More efficient training at the critical batch size

N(Cmin) X (Cmin)0'73
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Kaplan Scaling Law (simultaneous dependence formulation)

e The optimal number of steps will only grow very slowly with compute
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Kaplan Scaling Law (contradiction)

e At larger scales, the performance predicted by the L(C_min) scaling law
decreases below what should be possible given the slow growth in training

data with compute
o Potential implication: an estimate of the point at which Transformer language models reach its

maximal performance
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Recap: Kaplan Scaling Law

e 10x increase in compute should be allocated to a 5.5% increase in model size
and a 1.8x increase in training tokens
e |large models should not be trained to their lowest possible loss to be compute
optimal
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Chinchilla Scaling Law

e 10x increase in compute should be allocated to a &%= increase in model size
and a +8=increase in training tokens

e |large models should not be trained to their lowest possible loss to be compute
optimal

“for compute-optimal training, the model size and the
number of training tokens should be scaled equally”




Chinchilla Scaling Law (TL;DR)

e Large models should be substantially smaller and therefore trained much
longer than is previously done according to the Kaplan scaling law, i.e. a lot of
models are undertrained
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Chinchilla Scaling Law (TL;DR)

e Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens?

Nopt(C)2 DOpt(C) = argmin L(N: D)
N,D s.t. FLOPs(N,D)=C



Chinchilla Scaling Law (Approach 1)

e Fix model sizes and vary number of training tokens
o  Train models (from 70M to > 10B params) for 4 different training sequences
Obtain a continuous mapping from FLOP count to training loss for each run
For each FLOP, determine the run that achieves the lowest loss
Find the model size that achieves the lowest loss with the required # training tokens
Fit power law to estimate the optimal model size and # training tokens for a given compute
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Chinchilla Scaling Law (Approach 2)

® |SOFLOP profiles
o Vary the model size for a fixed set of 9 different training FLOP counts (from 6*10*8 to 3*10721
FLOPs) and monitor the final training loss
Plot the final loss against the param count for each FLOP budget to obtain the IsoFLOP curves
o Fit a parabola to estimate the model size where the minimum loss is achieved
o Fit a power law between FLOPs and model size and # training tokens
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Chinchilla Scaling Law (Approach 3)

e Fitting a parametric loss function

IS(ND)AE+A+B
7/ T U N« ' pP

o E: Entropy of natural text
Second term: transformer of size N underperforms the ideal generative process
o Last term: transformer is not trained to convergence due to finite optimization steps and dataset

samples



Chinchilla Scaling Law (Approach 3)

e Minimize the loss under the constraint FLOPs(N,D) ~ 6ND

a b a+p
Nopt<<:)=G(—), Dopt<<:)=G-1(§), where G=(%) . a=




Chinchilla Scaling Law (Summary of estimations)

Approach Coeff. a where N,,; «« C* Coeff. b where D, cP
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) 0.73 0.27




Chinchilla Scaling Law (Findings)

e Models (Gopher, GPT-3, Megatron-Turing NLG etc.) are largely over-sized /

under-trained
e Smaller models should have been trained on more tokens to achieve the best

performance
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Chinchilla Scaling Law (Chinchilla, training)

e Same architecture and setup as Gopher except:

o Use aslightly different subset distribution of MassiveText to account for the increased # training
tokens
Use AdamW for better downstream performance

o Use a slightly modified SentencePiece tokenizer and no NFKC normalization for better
representation of math and chemistry

o Forward and backward passes are computed in bfloat16 while storing a float32 copy of weights
in the distributed optimizer states



Chinchilla Scaling Law (Chinchilla, results)

e Language modeling
o  Show a consistent decrease in bits-per-byte (bpb) of Chinchilla compared to Gopher on all
subsets of The Pile
o  Chinchilla is trained on 4xmore data than Gopher and there may be data contamination
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Chinchilla Scaling Law (Chinchilla, results)

e MMLU

o  Except on 4 tasks (college_mathematics, econometrics, moral_scenarios, and formal_logic),
Chinchilla outperforms Gopher

e Similar trend on BlIG-bench
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Chinchilla Scaling Law (Chinchilla, results)

e Reading comprehension

Chinchilla Gopher GPT-3 MT-NLG 530B

LAMBADA Zero-Shot 77 .4 74.5 76.2 76.6
RACE-m Few-Shot 86.8 75.1 58.1 -
RACE-h Few-Shot 82.3 71.6 46.8 47.9

e Common sense: PIQA, SIQA, Winogrande, HellaSwag, BoolQ

Chinchilla Gopher GPT-3 MT-NLG 530B Supervised SOTA

HellaSWAG 80.8% 79.2% 78.9% 80.2% 93.9%
PIQA 81.8% 81.8% 81.0% 82.0% 90.1%
Winogrande  74.9% 70.1% 70.2% 73.0% 91.3%
SIQA 51.3% 50.6% - - 83.2%

BoolQ 83.7% 79.3% 60.5% 78.2% 91.4%




Chinchilla Scaling Law (Chinchilla, results)

Closed-book QA

Method Chinchilla Gopher GPT-3 SOTA (open book)
0-shot 16.6% 10.1% 14.6%

Natural Questions (dev) 5-shot 31.5% 24.5% - 54.4%
64-shot 35.5% 28.2% 29.9%
0-shot 67.0% 52.8% 64.3%

TriviaQA (unfiltered, test)  5-shot 73.2% 63.6% - -

64-shot 72.3% 61.3% 71.2%
0-shot 55.4% 43.5% -

TriviaQA (filtered, dev) 5-shot 64.1% 57.0% - 72.5%
64-shot 64.6% 57.2% -




Chinchilla Scaling Law (Chinchilla, results)

e Gender bias and toxicity
o  Generally overcome gender stereotypes
o Negligible effect on toxic text generation
o  Toxicity levels in unconditional text generation are largely independent of the model quality



Recap: Chinchilla Scaling Law

e [or compute-optimal training, the model size and the number of training

tokens should be scaled equally
e Large models should be substantially smaller and therefore trained much

longer, i.e. a lot of models are undertrained
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GPT-3 (TL:DR)

e An autoregressive language model of 175B parameters, 10x larger than any
previous LMs

e Introduced the concept of “in-context learning”, and showed competitive
performance



Overview of GPT-3

* GPT-8is a Transformer decoder only trained on large amounts of unlabeled text

¢ All models were trained on 300B tokens

Model Name Nparams Mayers Omodel Mheads Odhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

* Scaling laws (next week): “scaling of validation loss should be approximately a
smooth power law as a function of size”

® Larger models typically use a larger batch size but require a smaller learning rate
* Context window size = 2048

* Use alot of “model parallelism” during training

* Use Adam optimizer 3, = 0.9, B, = 0.95, and e = 10~8



Training Petaflop/s-days

GPT-3: training compute

Total Compute Used During Training Total trai Total trai
o in otal train

10000 compute compute  Params  Iraining tokens
Model (PF-days) (flops) M) (billions)

T5-Small 2.08E+00  1.80E+20 60 1,000
1000 T5-Base 7.64E+00  6.60E+20 220 1,000
T5-Large 2.67E+01  2.31E+21 770 1,000
T5-3B 1.04E+02  9.00E+21 3,000 1,000
T5-11B 3.82E+02  3.30E+22 11,000 1,000
100 BERT-Base 1.89E+00  1.64E+20 109 250
BERT-Large 6.16E+00  5.33E+20 355 250
RoBERTa-Base  1.74E+01  1.50E+21 125 2,000
% RoBERTa-Large 4.93E+01  4.26E+21 355 2,000
GPT-3 Small 2.60E+00  2.25E+20 125 300
GPT-3 Medium  7.42E+00 6.41E+20 356 300
GPT-3 Large 1.58E+01 1.37E+21 760 300
1 - GPT-3 XL 2.75E+01  2.38E+21 1,320 300
& & & GPT-32.7B 5.52E+01  4.77E+21 2,650 300
& & qb «" '\ & «" ¢ 55 ««“’ é? GPT-36.7B 1.39E+02  1.20E+22 6,660 300
¢ &S @&é\ ‘*k c?‘ ‘3« é{\ K ‘3& GPT-3 13B 2.68E+02 231E+22 12,850 300
GPT-3 175B 3.64E+03  3.14E+23 174,600 300

“We train much larger models on many fewer tokens”

(Slides from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Dangi Chen)
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A summary of results
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