
Week 2 - Sep 9: Scaling laws: why 
foundation models are large

Catherine Cheng



(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 4 by Sanjeev Arora)



(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 4 by Sanjeev Arora)



● Scaling laws predict the model performance using a power-law when one of 
model size, dataset size, or compute budget varies
○ Early exploration of efficient (conv-)nets

■ Tan, Mingxing, and Quoc Le. "Efficientnet: 
Rethinking model scaling for 
convolutional neural networks." 
International conference on machine 
learning. PMLR, 2019.

What is scaling laws and why do we need them

(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 4 by Sanjeev Arora)



What is scaling laws and why do we need them

● Scaling laws predict the model performance using a power-law when one of 
model size, dataset size, or compute budget varies
○ Early exploration of efficient (conv-)nets
○ What’s a general recipe to scale model up for arbitrary tasks?

■ Transformers, autoregressive language modeling

(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 4 by Sanjeev Arora)



Overview

● Scaling Laws for Neural Language Models (Kaplan scaling law)

● Training Compute-Optimal Large Language Models (Chinchilla scaling law)

● Language Models are Few-Shot Learners (GPT3)



Kaplan Scaling Law (TL;DR)

● 10× increase in compute should be allocated to a 5.5× increase in model size 
and a 1.8× increase in training tokens

● large models should not be trained to their lowest possible loss to be compute 
optimal

(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 4 by Sanjeev Arora)



Kaplan Scaling Law (TL;DR)

1. Performance depends strongly on scale, 
weakly on model shape

2. Smooth power laws
3. Universality of overfitting
4. Universality of training
5. Transfer improves with test performance

1. .
2. .
3. .
4. .
5. .
6. Sample efficiency
7. Convergence is inefficient
8. Optimal batch size



Kaplan Scaling Law (training setup)

● Model: decoder-only transformer
● Dataset: WebText
● BPE tokenizer, context length = 1024
● Compute for forward pass:
● Estimated non-embedding compute per training token:
● LR schedule with a 3000 step linear warmup followed by a cosine decay to 0

○ Convergence were largely independent of learning rate schedule



Kaplan Scaling Law (basic power law)

Varying factors:

1. Model size (from 768 to 1.5B non-embedding params)
2. Dataset size (from 22M to 23B tokens)
3. Shape (depth, width, attention heads, FFN dimension)
● Context length (mostly 1024)
● Batch size (mostly 2^19)



Kaplan Scaling Law (basic power law)

1. Model size

Performance depends strongly on # layers when embedding parameters are included

Performance converges to a single trend when embedding params are excluded



Kaplan Scaling Law (basic power law)

1. Model size

Steady trend with non-embedding parameter count N, which can be fit into



Kaplan Scaling Law (basic power law)
1.
2. Dataset size and Compute

Similar trend for dataset size D and compute C

Non-embedding compute is estimated as C=6NBS
Results in the plots have B (batch size) fixed so are not meant to be optimal 



Kaplan Scaling Law (simultaneous dependence formulation)

● Proposed parameterization for model size and dataset size

under 3 principles:

1. Changes in vocab size / tokenization rescale the loss by an overall factor
2. Approach L(N) with fixed N and D -> ∞ and approach L(D) with fixed D and N -> ∞
3. L(N,D) should be analytic at D = ∞ so that it has a series expansion in 1/Dwith integer powers 

(more speculative)



Kaplan Scaling Law (simultaneous dependence results)

● Left: For large D, performance is a straight power law in N
● Right: The extent of overfitting depends predominantly on the ratio 



Kaplan Scaling Law (simultaneous dependence formulation)

● There exists a critical batch size s.t. up to this batch size can be increased with 
very minimal degradation in compute-efficiency, which can be predicted using 
gradient noise scale, defined as 

Minimum # data to be processed

Minimum # training steps to achieve L



Kaplan Scaling Law (simultaneous dependence formulation)

● The critical batch size can be fit with a power-law in the loss



Kaplan Scaling Law (simultaneous dependence formulation)

● Use the critical batch size to estimate the relation between # training steps 
with batch size 2^19



Kaplan Scaling Law (simultaneous dependence formulation)

● Fit to



Kaplan Scaling Law (simultaneous dependence formulation)

● More efficient training at the critical batch size



Kaplan Scaling Law (simultaneous dependence formulation)

● The optimal number of steps will only grow very slowly with compute



● At larger scales, the performance predicted by the L(C_min) scaling law 
decreases below what should be possible given the slow growth in training 
data with compute
○ Potential implication: an estimate of the point at which Transformer language models reach its 

maximal performance

Kaplan Scaling Law (contradiction)



Recap: Kaplan Scaling Law

● 10× increase in compute should be allocated to a 5.5× increase in model size 
and a 1.8× increase in training tokens

● large models should not be trained to their lowest possible loss to be compute 
optimal



Chinchilla Scaling Law

● 10× increase in compute should be allocated to a 5.5× increase in model size 
and a 1.8× increase in training tokens

● large models should not be trained to their lowest possible loss to be compute 
optimal

“for compute-optimal training, the model size and the 
number of training tokens should be scaled equally”



Chinchilla Scaling Law (TL;DR)

● Large models should be substantially smaller and therefore trained much 
longer than is previously done according to the Kaplan scaling law, i.e. a lot of 
models are undertrained



Chinchilla Scaling Law (TL;DR)

● Given a fixed FLOPs budget, how should one trade-off model size and the 
number of training tokens?



Chinchilla Scaling Law (Approach 1)

● Fix model sizes and vary number of training tokens
○ Train models (from 70M to > 10B params) for 4 different training sequences
○ Obtain a continuous mapping from FLOP count to training loss for each run
○ For each FLOP, determine the run that achieves the lowest loss
○ Find the model size that achieves the lowest loss with the required # training tokens
○ Fit power law to estimate the optimal model size and # training tokens for a given compute



Chinchilla Scaling Law (Approach 2)

● IsoFLOP profiles
○ Vary the model size for a fixed set of 9 different training FLOP counts (from 6*10^18 to 3*10^21 

FLOPs) and monitor the final training loss
○ Plot the final loss against the param count for each FLOP budget to obtain the IsoFLOP curves
○ Fit a parabola to estimate the model size where the minimum loss is achieved
○ Fit a power law between FLOPs and model size and # training tokens



Chinchilla Scaling Law (Approach 3)

● Fitting a parametric loss function

○ E: Entropy of natural text
○ Second term: transformer of size N underperforms the ideal generative process
○ Last term: transformer is not trained to convergence due to finite optimization steps and dataset 

samples



Chinchilla Scaling Law (Approach 3)

● Minimize the loss under the constraint 



Chinchilla Scaling Law (Summary of estimations)



Chinchilla Scaling Law (Findings)

● Models (Gopher, GPT-3, Megatron-Turing NLG etc.) are largely over-sized / 
under-trained

● Smaller models should have been trained on more tokens to achieve the best 
performance



Chinchilla Scaling Law (Chinchilla, training)

● Same architecture and setup as Gopher except:
○ Use a slightly different subset distribution of MassiveText to account for the increased # training 

tokens
○ Use AdamW for better downstream performance
○ Use a slightly modified SentencePiece tokenizer and no NFKC normalization for better 

representation of math and chemistry
○ Forward and backward passes are computed in bfloat16 while storing a float32 copy of weights 

in the distributed optimizer states



Chinchilla Scaling Law (Chinchilla, results)

● Language modeling
○ Show a consistent decrease in bits-per-byte (bpb) of Chinchilla compared to Gopher on all 

subsets of The Pile
○ Chinchilla is trained on 4×more data than Gopher and there may be data contamination



Chinchilla Scaling Law (Chinchilla, results)

● MMLU
○ Except on 4 tasks (college_mathematics, econometrics, moral_scenarios, and formal_logic), 

Chinchilla outperforms Gopher

● Similar trend on BIG-bench





Chinchilla Scaling Law (Chinchilla, results)

● Reading comprehension

● Common sense: PIQA, SIQA, Winogrande, HellaSwag, BoolQ



Chinchilla Scaling Law (Chinchilla, results)

● Closed-book QA



Chinchilla Scaling Law (Chinchilla, results)

● Gender bias and toxicity
○ Generally overcome gender stereotypes
○ Negligible effect on toxic text generation
○ Toxicity levels in unconditional text generation are largely independent of the model quality



Recap: Chinchilla Scaling Law

● For compute-optimal training, the model size and the number of training 
tokens should be scaled equally

● Large models should be substantially smaller and therefore trained much 
longer, i.e. a lot of models are undertrained



GPT-3 (TL;DR)

● An autoregressive language model of 175B parameters, 10x larger than any 
previous LMs

● Introduced the concept of “in-context learning”, and showed competitive 
performance

(Slides adapted from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Danqi Chen)



(Slides from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Danqi Chen)



(Slides from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Danqi Chen)



(Slides from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Danqi Chen)


