Week 2 - Sep 9: Scaling laws: why

foundation models are large

Catherine Cheng

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are
ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization
of continued exponentially falling cost per unit of computation. Most Al research has been conducted as if the computation
available to the agent were constant (in which case leveraging human knowledge would be one of the only ways to
improve performance) but, over a slightly longer time than a typical research project, massively more computation
inevitably becomes available. Seekingian improvement that makes a difference in the shorter term, researchers seek to
leverage their human knowledge of the domain, but the only thing that matters in the long run is the leveraging of
computation. These two need not run counter to each other, but in practice they tend to. Time spent on one is time not
spent on the other. There are psychological commitments to investment in one approach or the other. And the human-
knowledge approach tends to complicate methods in ways that make them less suited to taking advantage of general
methods leveraging computation. There were many examples of Al researchers' belated learning of this bitter lesson, and
it is instructive to review some of the most prominent.

The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are
ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization
of continued exponentially falling cost per unit of computation. Most Al research has been conducted as if the computation
available to the agent were constant (in which case leveraging human knowledge would be one of the only ways to
improve performance) but, over a slightly longer time than a typical research project, massively more computation
inevitably becomes available. Seekingian improvement that makes a difference in the shorter term, researchers seek to
leverage their human knowledge of the domain, but the only thing that matters in the long run is the leveraging of
computation. These two need not run counter to each other, but in practice they tend to. Time spent on one is time not
spent on the other. There are psychological commitments to investment in one approach or the other. And the human-
knowledge approach tends to complicate methods in ways that make them less suited to taking advantage of general
methods leveraging computation. There were many examples of Al researchers' belated learning of this bitter lesson, and
it is instructive to review some of the most prominent.

One thing that should be learned from the bitter lesson is the great power of general purpose methods, of methods
that continue to scale with increased comﬁ?taﬁon even as the available computation becomes very great. The two
methods that seem to scale arbitrarily in this way are search and learning.

What is scaling laws and why do we need them

Scaling laws predict the model performance using a power-law when one of
model size, dataset size, or compute budget varies

O

Early exploration of efficient (conv-)nets

Tan, Mingxing, and Quoc Le. "Efficientnet:
Rethinking model scaling for
convolutional neural networks."
International conference on machine
learning. PMLR, 2019.

In this paper, we propose a new compound scaling method,
which use a compound coefficient ¢ to uniformly scales
network width, depth, and resolution in a principled way:

depth: d = o?
width: w = %
resolution: r = % (3)

st.a-f2-42~2
a>1,8>1v>1

where «, 3, are constants that can be determined by a
small grid search. Intuitively, ¢ is a user-specified coeffi-

What is scaling laws and why do we need them

e Scaling laws predict the model performance using a power-law when one of

model size, dataset size, or compute budget varies
o Early exploration of efficient (conv-)nets
o What’s a general recipe to scale model up for arbitrary tasks?
m Transformers, autoregressive language modeling

Overview

e Scaling Laws for Neural Language Models (Kaplan scaling law)

e Training Compute-Optimal Large Language Models (Chinchilla scaling law)

Kaplan Scaling Law (TL;DR)

e 10x increase in compute should be allocated to a 5.5% increase in model size
and a 1.8x increase in training tokens
e |large models should not be trained to their lowest possible loss to be compute
optimal
7 4.2
6 —— L=(D/5.4-10%3)700% | 5.6 —— L=(N/8.8-10"3)0-076
3.9 4.8
8 ° ‘o
S '
é ; 3.3 3.2
3.0
2.4
L= (Cpin/2.3 - 108)~0-050
2 . ; . : 2.7 . . . r .
1072 1077 107> 103 1071 10! 108 10° 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Kaplan Scaling Law (TL;DR)

ok wWwN

Performance depends strongly on scale,
weakly on model shape

Smooth power laws

Universality of overfitting

Universality of training

Transfer improves with test performance

6.
7.
8.

Sample efficiency
Convergence is inefficient
Optimal batch size

Kaplan Scaling Law (training setup)

Model: decoder-only transformer

Dataset: Weblext

BPE tokenizer, context length = 1024

Compute for forward pass: Ciorward ® 2N + 2N1ayerNctx@model

Estimated non-embedding compute per training token: C ~ 6N

LR schedule with a 3000 step linear warmup followed by a cosine decay to O
o Convergence were largely independent of learning rate schedule

Kaplan Scaling Law (basic power law)

Varying factors:

1. Model size (from 768 to 1.5B non-embedding params)
2. Dataset size (from 22M to 23B tokens)

3. Shape (depth, width, attention heads, FFN dimension)
e Context length (mostly 1024)

e Batch size (mostly 2*19)

Kaplan Scaling Law (basic power law)

1. Model size

Performance depends strongly on # layers when embedding parameters are included

Performance converges to a single trend when embedding params are excluded

-\‘\‘\‘_‘__‘_‘ 6
5 5
3 4 —— ayer 3 4
2 —e— 1 Layer \\\ © —e— 1 Layer
it —e— 2 Layers N il —e— 2 Layers
31 —— 3 Layers 3] — 3 Layers \.
—s— 6 Layers —e— 6 Layers \
> 6 Layers > 6 Layers
2 T T T T 2 S T " T ; T T
106 107 108 10° 103 104 10° 108 107 108 10°

Parameters (with embedding) Parameters (non-embedding)

Kaplan Scaling Law (basic power law)

1. Model size

Steady trend with non-embedding parameter count N, which can be fit into

7
6
a° "
N
S N,
% L(N)~ [=%
B g N
L= (Cmin/2.3-108)70.050
2 T T r r
10=® 10°7 107 10°3 107! 10!

Compute
PF-days, non-embedding

Kaplan Scaling Law (basic power law)

2. Dataset size and Compute

Similar trend for dataset size D and compute C

4.2
—— L=(D/5.4-10%3)-00% | 5.6 —— L=(N/8.8-103)-0076 D @D
3.9 18 L(D) ~ —
§ 3.6 40 D
-
-oqw: 3.3 3.2 o
a 3.0 Cc c
' 2.4 L(O) ~ _C
2.7 . r : : .
108 109 105 107 10°
Dataset Size Parameters
tokens non-embedding

Non-embedding compute is estimated as C=6NBS
Results in the plots have B (batch size) fixed so are not meant to be optimal

Kaplan Scaling Law (simultaneous dependence formulation)

e Proposed parameterization for model size and dataset size

L(N,D) = [(%) & + %] "

under 3 principles:

1. Changes in vocab size / tokenization rescale the loss by an overall factor

2. Approach L(N) with fixed N and D -> « and approach L(D) with fixed D and N -> o«

3. L(N,D) should be analytic at D = « so that it has a series expansion in 1/Dwith integer powers
(more speculative)

Kaplan Scaling Law (simultaneous dependence results)

e Left: For large D, performance is a straight power law in N
e Right: The extent of overfitting depends predominantly on the ratio N%/D

Data Size Bottleneck

4.5
Data Size
4.0 e 2IM
A e 43M
Q3.5 ® 86M
T'_, e 172M
8 ® 344M
= 3.0 e 688M
e 14B
22.0B
2:5
106 107 108 10°

Params (non-embed)

We estimate that the variation in the loss with different random seeds is roughly 0.02, which means that to
avoid overfitting when training to within that threshold of convergence we require

D> (5x10%) NO™ (4.4)

Kaplan Scaling Law (simultaneous dependence formulation)

e There exists a critical batch size s.t. up to this batch size can be increased with
very minimal degradation in compute-efficiency, which can be predicted using
gradient noise scale, defined as

j - Minimum # data to be processed

o j—_— Minimum # training steps to achieve L

Kaplan Scaling Law (simultaneous dependence formulation)

e The critical batch size can be fit with a power-law in the loss

Critical Batch Size vs. Performance

/a
8
B 2 10°
Berit(L) & —— 2
. ~ £ "
crit Ll/aB @ S
tn 102 4
= i
8 g ' :
where B, ~ 2 x 10° and ap ~ 0.21. & 108 N e PRy
TU & iy Empirical B, N = 85M
-f—j f‘y"’ —--= Beit=2.1x 108 tokens - L=48
= % Noise Scale Measurement
O 103

101 6 x 10° 4%x10° 3x10°
WebText2 Train Loss

Kaplan Scaling Law (simultaneous dependence formulation)

e Use the critical batch size to estimate the relation between # training steps
with batch size 2™9

S
Smin S =
g E () 1 + Bcrit(L)/B
~1 —1) =1
(S’min) (Emin) (minimum steps, at B > B;it)
E =BS
FEo; C
. — —~mn ChamlC) =
Bcrlt (L) == Smin () 1 + B/Bcrit (L)

(minimum compute, at B < Brit)

Kaplan Scaling Law (simultaneous dependence formulation)

e Fitto
ags
L(N, Sin))
0.5
0.4 Data Size
- e 2IM
| e 43M
s 0.3 e 86M
I e 172M
Q 0.2 e 344M
;T ® 688M
3 e 14B
0.1 1 22.0B
0.0

104 10-3 10-2 10-1
Nawao/D

Kaplan Scaling Law (simultaneous dependence formulation)

e More efficient training at the critical batch size

N(Cmin) X (Cmin)0'73

7 - L= (Crin/2.3-10%)70050
6 - L=(C/2.0-107)-005
5
17
Q
S
%
()
=
3

2
108 10-6 1074 1072 10°
Compute (PF-days), non-embedding

Kaplan Scaling Law (simultaneous dependence formulation)

e The optimal number of steps will only grow very slowly with compute

N(Crmin) & (Conin)®™ ——— Smin ¢ (Clnin) 3

—e— Snin (adjusted)
150009 —--- Smin=(5-4'103)'C%i‘.’13 /

—o— S (fixed-batch)

100001

Steps

5000 1

1071

0 T . :
1077 10-5 1073
Compute (PF-days), excluding embedding:

Kaplan Scaling Law (contradiction)

e At larger scales, the performance predicted by the L(C_min) scaling law
decreases below what should be possible given the slow growth in training

data with compute
o Potential implication: an estimate of the point at which Transformer language models reach its

maximal performance

7.5
6.0 L(Cmin)
— L(D(O))
4.5
2
3
= 3.0
[}
()
[_‘
1.5 < | The intersection point is sensitive to
’ +— the precise power-law parameters
108 10° 102 10 104 107

Compute (PF-days), non-embedding

Recap: Kaplan Scaling Law

e 10x increase in compute should be allocated to a 5.5% increase in model size
and a 1.8x increase in training tokens
e |large models should not be trained to their lowest possible loss to be compute
optimal
7 4.2
6 —— L=(D/5.4-10%3)700% | 5.6 —— L=(N/8.8-10"3)0-076
3.9 4.8
2 ° . ‘o
S '
é ; 3.3 3.2
3.0
2.4
L= (Cpin/2.3 - 108)~0-050
2 . ; . : 2.7 . . . r .
1072 1077 107> 103 1071 10! 108 10° 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Chinchilla Scaling Law

e 10x increase in compute should be allocated to a &%= increase in model size
and a +8=increase in training tokens

e |large models should not be trained to their lowest possible loss to be compute
optimal

“for compute-optimal training, the model size and the
number of training tokens should be scaled equally”

Chinchilla Scaling Law (TL;DR)

e Large models should be substantially smaller and therefore trained much
longer than is previously done according to the Kaplan scaling law, i.e. a lot of
models are undertrained

1T
—— Approach 1
1008 —— Approach 2
) —— Approach 3
% 10B ---Kaplan et al (2020)
E Y¢ Chinchilla (70B)
£ 1.08 ¥¢ Gopher (280B)
% GPT-3 (175B)
Y Megatron-Turing NLG (530B)
100M

1017 1019 1021 1023 1025
FLOPs

Chinchilla Scaling Law (TL;DR)

e Given a fixed FLOPs budget, how should one trade-off model size and the
number of training tokens?

Nopt(C)2 DOpt(C) = argmin L(N: D)
N,D s.t. FLOPs(N,D)=C

Chinchilla Scaling Law (Approach 1)

e Fix model sizes and vary number of training tokens
o Train models (from 70M to > 10B params) for 4 different training sequences
Obtain a continuous mapping from FLOP count to training loss for each run
For each FLOP, determine the run that achieves the lowest loss
Find the model size that achieves the lowest loss with the required # training tokens
Fit power law to estimate the optimal model size and # training tokens for a given compute

1T 1.5T
1012
100B &78
”
0 101 ol
g a go#?!
g 10B ’.‘." g #o
%2 o
g Y F 1010 -~
S 1.08 / /"
% o
ﬂ.
}.%! .
00 10° o7
107 10%® 101 1020 102 1022 10V 101 102 1023 105 107 101 102 102 102

FLOPS FLOPs FLOPs

Chinchilla Scaling Law (Approach 2)

® |SOFLOP profiles
o Vary the model size for a fixed set of 9 different training FLOP counts (from 6*10*8 to 3*10721
FLOPs) and monitor the final training loss
Plot the final loss against the param count for each FLOP budget to obtain the IsoFLOP curves
o Fit a parabola to estimate the model size where the minimum loss is achieved
o Fit a power law between FLOPs and model size and # training tokens

10T
e 1T
= {,g:‘::'g” 147
3.0 N " 1T
‘ "5*5'/6'5? P) 100B ks
" g A1)
n2.8 6e18 0
3 o 1lel9 ‘.\."0/ T4 8 o 1008 K
g : '\'s./ o 108 b o°
S26 —® 3el9 .\ - % é X @
c ". - ’ [l . P
7 —&— 6el19 , = ... F 108 ,...
Fo,, —® 1e20 T & 1B ® o
7 —e— 3e20 ®
—e— 620 M o 1B
22 _¢ 1e21 100M o '
—o— 3e2l 4
2.0 = 100M .
100M 300M 1B 3B 6B 30B 10! 10° 102! 102 1025 710! 100 102 102 102

Parameters FLOPs FLOPs

Chinchilla Scaling Law (Approach 3)

e Fitting a parametric loss function

IS(ND)AE+A+B
7/ T U N« ' pP

o E: Entropy of natural text
Second term: transformer of size N underperforms the ideal generative process
o Last term: transformer is not trained to convergence due to finite optimization steps and dataset

samples

Chinchilla Scaling Law (Approach 3)

e Minimize the loss under the constraint FLOPs(N,D) ~ 6ND

a b a+p
Nopt<<:)=G(—), Dopt<<:)=G-1(§), where G=(%) . a=

Chinchilla Scaling Law (Summary of estimations)

Approach Coeff. a where N,,; «« C* Coeff. b where D, cP
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) 0.73 0.27

Chinchilla Scaling Law (Findings)

e Models (Gopher, GPT-3, Megatron-Turing NLG etc.) are largely over-sized /

under-trained
e Smaller models should have been trained on more tokens to achieve the best

performance

1T

—— Approach 1
—— Approach 2
—— Approach 3
--- Kaplan et al (2020)

100B

10B

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)

Parameters

100M

1017 1019 1021 1023 1025
FLOPs

Chinchilla Scaling Law (Chinchilla, training)

e Same architecture and setup as Gopher except:

o Use aslightly different subset distribution of MassiveText to account for the increased # training
tokens
Use AdamW for better downstream performance

o Use a slightly modified SentencePiece tokenizer and no NFKC normalization for better
representation of math and chemistry

o Forward and backward passes are computed in bfloat16 while storing a float32 copy of weights
in the distributed optimizer states

Chinchilla Scaling Law (Chinchilla, results)

e Language modeling
o Show a consistent decrease in bits-per-byte (bpb) of Chinchilla compared to Gopher on all
subsets of The Pile
o Chinchilla is trained on 4xmore data than Gopher and there may be data contamination

Decrease in bpb
compared to Gopher
o o 9o @
o o o =
£ o [o2] o

o
o
N}

o
o
S)

(%) — [%2] b [} (] [%2] wn (9] wn o =]
2 9 53 ® 0 9 &g ¢ 2 8 E 29 £ 85 25 9
2 £ g 5 '3 ¢ 5 %X o &8 & = x 2 < o
e o 53 ¢ 2 o2 68 5 ¥ ¢ © © 9 O T 3 o O
£ 9o o O 75 Y < 9 o & € o o ® 5 £ £ o
nw x £ U Q@ O G 35 9] E o 2 S 5 i
Q g o9 [S x 5 ¢ x 0 = 5 2 o
© A o] X @ e 2 U £ < Qo jud
I =& U 0 O ¥ g € ®© Q 3 (7]
T = ® c o ¢ 8 o < Q
O € o o @ o € c
€ o 5 3 ° © !]
Q fhad o E =1
2 2 ° o
S

Chinchilla Scaling Law (Chinchilla, results)

e MMLU

o Except on 4 tasks (college_mathematics, econometrics, moral_scenarios, and formal_logic),
Chinchilla outperforms Gopher

e Similar trend on BlIG-bench

wIIWTTTTTTWWW7WM?”WWW”M

o o o o
m o~ —

laydoo uano
juswanosdw| aA13e|9Y

o
—
I

soIsAyd jenidasuod
soiewaylew [jooyds ybiy
soi1sAyd ab9)j0d

Ajjenxas uewny

me| [euoissajold

Awojeue

eigabje 1oesisqe
soljewayjew Alejuswsa|d
Adasiwayd jooyds ybiy
A103siyaud

upIpaw |euolssajoud
buipunodoe jeuoissajoud
sansniels jooyds ybiy
SOIWOU0D30JdIW ™ [ooyds ybiy
Me| |euoljeulalul

salpnis A31unaas

A3unoas 1aandwod

puibe uewny

sa1ndsip” |eJow
Aydoso|iyd

ABojouIn

Ao1jod " ubiai0) sn
AJ103S1y pldom jooyds ybiy
Ansiwayd 269]j02

Abojoiq 269]|02

ABojoiq jooyds ybiy
Aydesboab jooyds ybiy
abpajmou| |ediuld
ouapnudsun(
snoaue||22sIw

ABojoydAsd |euoissajoud
saloe||es |ed160|
Awououise

auIpaw 269)j02

uolINu

AJ103s1y ueadouna jooyds ybiy
soniijod pue jusawuianob jooyds ybiy
Abojoidos
SJlwouoda04dew” [ooyds ybiy
soIsAyd jooyds ybiy
Bunadiew

92UaI2s Ja3ndwod jooyds ybiy
Juswabeuew

ABojoydAsd jooyds ybiy
AJ1031s1y sn jooyds ybiy
suolbija pliom

9ouaIds Jayndwod ah3)j0d
Buieaulbua |ed1139|D
SJIY19 ssaulsng

sjoe) |eqo|b

suone|as oyqnd

Bujuies| sulydsew
So139uab |edIpawW

2160| |ew.Jo)

SO1JRUDDS |RJOW
S21I32WOU023d
sonewsaylew 269)0d

Chinchilla Scaling Law (Chinchilla, results)

e Reading comprehension

Chinchilla Gopher GPT-3 MT-NLG 530B

LAMBADA Zero-Shot 77 .4 74.5 76.2 76.6
RACE-m Few-Shot 86.8 75.1 58.1 -
RACE-h Few-Shot 82.3 71.6 46.8 47.9

e Common sense: PIQA, SIQA, Winogrande, HellaSwag, BoolQ

Chinchilla Gopher GPT-3 MT-NLG 530B Supervised SOTA

HellaSWAG 80.8% 79.2% 78.9% 80.2% 93.9%
PIQA 81.8% 81.8% 81.0% 82.0% 90.1%
Winogrande 74.9% 70.1% 70.2% 73.0% 91.3%
SIQA 51.3% 50.6% - - 83.2%

BoolQ 83.7% 79.3% 60.5% 78.2% 91.4%

Chinchilla Scaling Law (Chinchilla, results)

Closed-book QA

Method Chinchilla Gopher GPT-3 SOTA (open book)
0-shot 16.6% 10.1% 14.6%

Natural Questions (dev) 5-shot 31.5% 24.5% - 54.4%
64-shot 35.5% 28.2% 29.9%
0-shot 67.0% 52.8% 64.3%

TriviaQA (unfiltered, test) 5-shot 73.2% 63.6% - -

64-shot 72.3% 61.3% 71.2%
0-shot 55.4% 43.5% -

TriviaQA (filtered, dev) 5-shot 64.1% 57.0% - 72.5%
64-shot 64.6% 57.2% -

Chinchilla Scaling Law (Chinchilla, results)

e Gender bias and toxicity
o Generally overcome gender stereotypes
o Negligible effect on toxic text generation
o Toxicity levels in unconditional text generation are largely independent of the model quality

Recap: Chinchilla Scaling Law

e [or compute-optimal training, the model size and the number of training

tokens should be scaled equally
e Large models should be substantially smaller and therefore trained much

longer, i.e. a lot of models are undertrained

’
4

1T -
,éf
7/
B /'* —— Approach 1
4 —— Approach 2
—— Approach 3

108 --- Kaplan et al (2020)

Y¢ Chinchilla (70B)
Y Gopher (280B)
*
*

Parameters

GPT-3 (175B)
Megatron-Turing NLG (530B)

10"]{'017’ 1019 1021 1023 1025

GPT-3 (TL:DR)

e An autoregressive language model of 175B parameters, 10x larger than any
previous LMs

e Introduced the concept of “in-context learning”, and showed competitive
performance

Overview of GPT-3

* GPT-8is a Transformer decoder only trained on large amounts of unlabeled text

¢ All models were trained on 300B tokens

Model Name Nparams Mayers Omodel Mheads Odhead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 1074
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 1074

* Scaling laws (next week): “scaling of validation loss should be approximately a
smooth power law as a function of size”

® Larger models typically use a larger batch size but require a smaller learning rate
* Context window size = 2048

* Use alot of “model parallelism” during training

* Use Adam optimizer 3, = 0.9, B, = 0.95, and e = 10~8

Training Petaflop/s-days

GPT-3: training compute

Total Compute Used During Training Total trai Total trai
o in otal train

10000 compute compute Params Iraining tokens
Model (PF-days) (flops) M) (billions)

T5-Small 2.08E+00 1.80E+20 60 1,000
1000 T5-Base 7.64E+00 6.60E+20 220 1,000
T5-Large 2.67E+01 2.31E+21 770 1,000
T5-3B 1.04E+02 9.00E+21 3,000 1,000
T5-11B 3.82E+02 3.30E+22 11,000 1,000
100 BERT-Base 1.89E+00 1.64E+20 109 250
BERT-Large 6.16E+00 5.33E+20 355 250
RoBERTa-Base 1.74E+01 1.50E+21 125 2,000
% RoBERTa-Large 4.93E+01 4.26E+21 355 2,000
GPT-3 Small 2.60E+00 2.25E+20 125 300
GPT-3 Medium 7.42E+00 6.41E+20 356 300
GPT-3 Large 1.58E+01 1.37E+21 760 300
1 - GPT-3 XL 2.75E+01 2.38E+21 1,320 300
& & & GPT-32.7B 5.52E+01 4.77E+21 2,650 300
& & qb «" '\ & «" ¢ 55 ««“’ é? GPT-36.7B 1.39E+02 1.20E+22 6,660 300
¢ &S @&é\ ‘*k c?‘ ‘3« é{\ K ‘3& GPT-3 13B 2.68E+02 231E+22 12,850 300
GPT-3 175B 3.64E+03 3.14E+23 174,600 300

“We train much larger models on many fewer tokens”

(Slides from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Dangi Chen)

Accuracy (%)

A summary of results

Zero-shot One-shot Few-shot

L L e —

Natural Language
Prompt

175B Params

60

50
40
30
13B Params
20
o/ ST
--------- 1.3B Params

0 10’ 10
Number of Examples in Context (K)

1

(Slides from COS 597R (Fall 2024): Deep Dive into Large Language Models Lecture 1 by Dangi Chen)

