Paper: Making Deep Learning
Go Brrrr From First Principles
By Horace He (2022)

Paper Overview

- Improving the performance of deep learning models on GPU is not a
function of simply scaling GPU compute.

Efficiency is driven by
Data flows (intra/inter GPU)
Type of operations (element wise ops vs mat muls)

Key Question: What should we optimize? Where to start?
Consider different abstraction levels (hardware -> kernels -> framework).

The 3 Performance Regimes

Compute-bound - when the GPU is busy doing actual floating point
operations (FLOPs)

Memory (bandwidth)-bound - when data transfer (global memory, DRAM,
moving tensors) is the limiter.

Overhead-bound - all extra costs (Python dispatch, kernel launch,
framework overhead, small ops) that arent compute or memory.

The Hardware

Graphical Processing Units (GPUs) are composed highly parallel processor cores
(SMs) architectures designed to accelerate matrix-multiplication.

Each SM

has registers (fastest)
Shared L1 cache

Shared across all SMs

L2 cache
Global memory

SM-0

SM-1 SM-(N-1)

L2 Cache (40 MB in A100)

Global Memory (DRAM, 40 GB in A100)

GPU Speed (FLOPs)

- Tensor cores = extremely
fast (hundreds of TFLOPs)
- Standard cores (FP32/FPé4)

= much slower (tens of
TFLOPs)

- GPUs are optimized for
matmul on tensor cores.

- Other ops won’t reach
peak FLOPs.

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS
(SXM4 AND PCIE FORM FACTORS)

A100 A100 A100 A100
40GB PCle | 80GB PCle | 40GBSXM | 80GB SXM
FP64 9.7 TFLOPS
FP64 Tensor 19.5 TFLOPS
Core
FP32 19.5 TFLOPS
Tensor Float 156 TFLOPS | 312 TFLOPS*
32(TF32)
BFLOAT16 312 TFLOPS | 624 TFLOPS*
Tensor Core
FP16 Tensor 312 TFLOPS | 624 TFLOPS*

Core

Common DNN Operations

Reductions - pooling layers, normalization.

Dot Products - matmul. Fully connected layers
Convolution can also be represented as matrix-vector and matrix-matrix multiplies.

Elementwise - ReLU, add, bias, scale

“Normalization and pointwise ops actually achieve 250x less FLOPS and 700x
less FLOPS than our matmuls”

FLOPs on BERT for different operator types

Table 1. Proportions for operator classes in PyTorch.
Operator class % flop % Runtime

A Tensor contraction 99.80 61.0
Stat. normalization 0.17 25.5
O Element-wise 0.03 13.5

Tensor contractions = ~100% of FLOPs, but only ~60% of runtime.

Normalization + elementwise = <1% FLOPs, but >35% runtime.

Compute = Everything: The Factory Abstraction

@o\m\wu}\ﬂ"
C,o‘:+ ff

D000 Vs o I_I [

oooo l l]
ooogd || «—e——

oooo JANIVAN L
Memor Compie
(DRAK) (SRAM +Compe)

Data movement (bandwidth) often limits performance more than compute.

Memory Bandwidth

Even with fast matmuls, performance is often limited by how quickly tensors move
through the GPU memory hierarchy.

Csm) sm) [sm [sm)
- Host Interface — GB/s T i " i
- Global mem — 1-2 T.B/s 't 1 It i1
- Shared mem — multi-TB/s G T UL e IR
- Registers (inside SMs) — tens of TB/s It Lt bt It
- | —4 S Y | = —4
[Global Memory]
(Host Interface

$

[Host CPU]

Kernel Fusion for high bandwidth costs...

Me,mof‘ky

z U
NN nao
—— |J{
AN NN A
_—
AN N D
ool b
QO 0OQ
—
<9_O___O /j ? Insteaq of dispatching to the
0 0 0 D GPU with one instruction at a

time, fuse them together.

o o Y o I

Compite

= <—0o<— b<—Q

Overhead

«10::Dispatcher::redispatch<at:: Tensor, at::Tensor const&, at::Tensor const&, c10::Scalar>

| torch::autograd:: VariableTy Tensor
B T T e =

Optimizations Galore

Performance Regime

Overhead-Bound
Execute Optimize Lower

Bandwidth-Bound

Compile Compute-Bound

Plausible Solutions

Tracing, Operator Fusion, don't use Python, a real JIT :*)

Operator Fusion

Use Tensor Cores, give Nvidia more money

Rooflines for LLM Scaling

Overview / Agenda

- Motivation

- What is a GPU?
- Networking

- Rooflines

Motivation

e There are various bottlenecks that an LLM training system may be governed
by

e Primarily, they are compute and networking limitations

e The goal of this work was to quantitatively describe the conditions in which
each of those factors become the bottleneck

e In pursuit of that, some background is required

What is a GPU?

e For the purpose of this talk, GPUs are little more than matrix multiplication
accelerators

e They’re more general purpose than TPUs in that they have contain more
modular hardware components that are capable of things besides matrix
multiplication

e And various advancements have resulted in more memory capacity, memory
bandwidth, etc.

e Butin the LLM domain, their performance is dominated by their matrix
multiplication capabilities

Networking

e For NVIDIA GPUs, there are two types of links that they can use to

communicate
e There is NVLink, which is an NVIDIA-specific protocol/interface that's used for

communication between GPUs within a pod
e NVLink allows for NVSwitches, which allow for 1-hop communication between

GPUs in a pod
e And there is a normal network link, like infiniband or ethernet, which allows for

communication over an arbitrary number of hops

Pods

e NVIDIA organizes their NVLink-connected GPUs into pods, which have
standard sizes

e Forthe H100, the standard size of a pod is 8 GPUs, with 4 NVSwitches

e In addition, each H100 GPU is paired with a 400G NIC

Networking beyond Pods

e Between pods, packets flow across standard networking interfaces like IB and
ethernet

e The topology of these networks is left up to operators

e Many decide to use a fat-tree topology, which guarantees some level of
bisection bandwidth

e Depending on sharding scheme, may place additional constraints on roofline

Data Parallelism

2:2-2-BDF
Tmath: X.C

2:2-2-DF
Tcomms: Wll y

Therefore, for Tiath > Teomms, We need B /(X C) > 1/Weollective OF

B S C
X Wcollective

Tensor Parallelism

2-2-BDF
Y-C

2-2-BD

Tcomms —

Tmath —

Wcollective

F-W, :
Y < collective

C

Expert Parallelism

4-B-k-D-F
Tmath: 7.0

4-B-D-(Z -8 -
Tcomms: W(Z) - min 8-k

, 1

We eitherneed K > Z /8 with FF > a- (Z — 8)/kor Z > K and F > 8 - a, where a« = C'/W . This gives
you two domains in which expert parallelism is possible, one with a small amount of expert parallelism (roughly
2-node) and small F', or one with large F' and Z arbitrarily large (up to E-way expert parallelism).

Pipeline Parallelism

2BD

ﬂotal PP comms — W . NMB ; (NMB + Nstages — 2)

T o 15 2BD
per-layer comms ~ 1 W . Nlayers

Summary

o Data parallelism or FSDP (ZeRO-1/3) requires a local batch size of about 2500 tokens per GPU, although in
theory in-network reductions + pure DP can reduce this somewhat.

¢ Tensor parallelism is compute-bound up to about 8-ways but we lack the bandwidth to scale much beyond
this before becoming comms-bound. This mostly limits us to a single NVLink domain (i.e. single-node or
need to use GB200NVL72 with to 72 GPUs).

¢ Any form of model parallelism that spans multiple nodes can further reduce the cost of FSDP, so we often
want to mix PP + EP + TP to cross many nodes and reduce the FSDP cost.

¢ Pipeline parallelism works well if you can handle the code complexity of zero-bubble pipelining and keep
batch sizes fairly large to avoid data-parallel bottlenecks. Pipelining usually makes ZeR0O-3 impossible
(since you would need to AllGather on each pipeline stage), but you can do ZeRO-1 instead.

At a high level, this gives us a recipe for sharding large models on GPUs:

¢ For relatively small dense models, aggressive FSDP works great if you have the batch size, possibly with
some amount of pipelining or tensor parallelism if needed.

e For larger dense models, some combination of 1-2 node TP + many node PP + pure DP works well.

e For MoEs, the above rule applies but we can also do expert parallelism, which we prefer to TP generally. If
F > 8% C/Wnode, we can do a ton of multi-node expert parallelism, but otherwise we're limited to roughly
2-node EP.

Terminology

The GPU houses both Dynamic RAM and static RAM. DRAM is for global
memory, that is memory persisted and accessible across the different cores of the
GPU. Shared memory (SMEM) is implemented on individual cores. When data
reaches the GPU but are not being actively used in a computation, they live on the
DRAM. When an operation on data is to be run, the instruction and associated
data move onto the shared memory of one or more cores.

SMEM is a fast on chip cache compared to global memory.

The Tensor Core
performs matrix
multiplications and
accounts for most of
the chip FLOPs/s,

similar to TPU MXU Tensor | Tensor || Tensor J| Tensor Tensor § Tensor | Tensor § Tensor Tensor § Tensor § Tensor | Tensor
Core Core Core Core Core Core Core Core Core Core Core Core

Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp Warp
Scheduler § Scheduler § Scheduler § Scheduler Scheduler § Scheduler § Scheduler § Scheduler Scheduler § Scheduler § Scheduler § Scheduler

The Warp Scheduler is a
e s L1 Cache/SMEM L1 Cache/SMEM L1 Cache/SMEM
SIMD vector unit like the (256KB in H100) (256kB in H100) (256KB in H100)

TPU VPU with 32 lanes,
called “CUDA Cores”. All
lanes must perform the L2 Cache

same operation in each (50MB in H100) The L2 Cache is a
cycle. relatively large
DRAM aka High Bandwidth Memory (HBM) hardware-controlled

80GB on H100, 192GB on B100 cache with faster

memory bandwidth.

SMEM (often called the L1
Cache) is a small, very fast
on-chip cache that can be

programmer controlled. DRAM or HBM stores
Similar to TPU VMEM but Abstract layout of an H100/B100 GPU parameters,

much smaller. activations, optimizer
state, etc.

