
Paper: Making Deep Learning 
Go Brrrr From First Principles

By Horace He (2022)



Paper Overview

- Improving the performance of deep learning models on GPU is not a 
function of simply scaling GPU compute. 

- Efficiency is driven by 
- Data flows (intra/inter GPU)
- Type of operations (element wise ops vs mat muls)

- Key Question: What should we optimize? Where to start? 
- Consider different abstraction levels (hardware -> kernels -> framework).



The 3 Performance Regimes

- Compute-bound - when the GPU is busy doing actual floating point 
operations (FLOPs)

- Memory (bandwidth)-bound - when data transfer (global memory, DRAM, 
moving tensors) is the limiter.

- Overhead-bound - all extra costs (Python dispatch, kernel launch, 
framework overhead, small ops) that arent compute or memory. 



The Hardware

Graphical Processing Units (GPUs) are composed highly parallel processor cores 
(SMs) architectures designed to accelerate matrix-multiplication. 

- Each SM 
- has registers (fastest)
- Shared L1 cache

- Shared across all SMs
- L2 cache
- Global memory



GPU Speed (FLOPs)

- Tensor cores = extremely 
fast (hundreds of TFLOPs)

- Standard cores (FP32/FP64) 
= much slower (tens of 
TFLOPs)

- GPUs are optimized for 
matmul on tensor cores. 

- Other ops won’t reach 
peak FLOPs.



Common DNN Operations

- Reductions - pooling layers, normalization.
- Dot Products - matmul. Fully connected layers

- Convolution can also be represented as matrix-vector and matrix-matrix multiplies. 

- Elementwise - ReLU, add, bias, scale

“Normalization and pointwise ops actually achieve 250x less FLOPS and 700x 
less FLOPS than our matmuls” 



FLOPs on BERT for different operator types

Tensor contractions = ~100% of FLOPs, but only ~60% of runtime.

Normalization + elementwise = <1% FLOPs, but >35% runtime.



Compute ≠ Everything: The Factory Abstraction

Data movement (bandwidth) often limits performance more than compute.



Memory Bandwidth

Even with fast matmuls, performance is often limited by how quickly tensors move 
through the GPU memory hierarchy.

- Host Interface → GB/s
- Global mem → 1-2 TB/s
- Shared mem → multi-TB/s
- Registers (inside SMs) → tens of TB/s
-



Kernel Fusion for high bandwidth costs…

Instead of dispatching to the 
GPU with one instruction at a 

time, fuse them together.



Overhead



Optimizations Galore

Performance Regime Plausible Solutions

Overhead-Bound Tracing, Operator Fusion, don't use Python, a real JIT :^)

Bandwidth-Bound Operator Fusion

Compute-Bound Use Tensor Cores, give Nvidia more money



Rooflines for LLM Scaling



Overview / Agenda

- Motivation
- What is a GPU?
- Networking
- Rooflines



Motivation

● There are various bottlenecks that an LLM training system may be governed 
by

● Primarily, they are compute and networking limitations
● The goal of this work was to quantitatively describe the conditions in which 

each of those factors become the bottleneck
● In pursuit of that, some background is required



What is a GPU?

● For the purpose of this talk, GPUs are little more than matrix multiplication 
accelerators

● They’re more general purpose than TPUs in that they have contain more 
modular hardware components that are capable of things besides matrix 
multiplication

● And various advancements have resulted in more memory capacity, memory 
bandwidth, etc. 

● But in the LLM domain, their performance is dominated by their matrix 
multiplication capabilities



Networking

● For NVIDIA GPUs, there are two types of links that they can use to 
communicate

● There is NVLink, which is an NVIDIA-specific protocol/interface that’s used for 
communication between GPUs within a pod

● NVLink allows for NVSwitches, which allow for 1-hop communication between 
GPUs in a pod

● And there is a normal network link, like infiniband or ethernet, which allows for 
communication over an arbitrary number of hops



Pods

● NVIDIA organizes their NVLink-connected GPUs into pods, which have 
standard sizes

● For the H100, the standard size of a pod is 8 GPUs, with 4 NVSwitches
● In addition, each H100 GPU is paired with a 400G NIC



Networking beyond Pods

● Between pods, packets flow across standard networking interfaces like IB and 
ethernet

● The topology of these networks is left up to operators
● Many decide to use a fat-tree topology, which guarantees some level of 

bisection bandwidth
● Depending on sharding scheme, may place additional constraints on roofline



Data Parallelism



Tensor Parallelism



Expert Parallelism



Pipeline Parallelism



Summary



Terminology

The GPU houses both Dynamic RAM and static RAM. DRAM is for global 
memory, that is memory persisted and accessible across the different cores of the 
GPU. Shared memory (SMEM) is implemented on individual cores. When data 
reaches the GPU but are not being actively used in a computation, they live on the 
DRAM. When an operation on data is to be run, the instruction and associated 
data move onto the shared memory of one or more cores.

SMEM is a fast on chip cache compared to global memory.




