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Structured linear maps
with kaleidoscope matrices

 Structured linear maps (low-rank, sparse, DFT, conv...):
ubiquitous in ML

 Challenge: they are hand picked
— don't adapt to data, requires domain knowledge

e This talk:

 Building on theory: how to learn a universal family, Kaleidoscope matrices
« Applications: improved CNN channel shuftle, simplified speech pipeline...
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Structured linear maps are ubiquitous in ML

You’ve heard of them before. ..
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But they re not easy to pick...

Challenges: Goals:

* Doesn’t adapt to data * L earnable, integrate with end-to-enad
ML pipeline

* Requires domain knowledge « Expressive tamily to automate design
choices

 Different implementations « Single efficient implementation,

| engineering etfort

|s there a learnable, expressive, efficient
representation for all structured linear maps”



Universal Representation for Structure:
Outline

1. Background: How to parameterize structured linear maps?
Fast algorithm < Sparse matrix factorization
Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient
Capture all structured linear maps (nearly tight # param. & run time).

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.
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Sparse factorization — Fast algorithm

-

Complexity: O(total nnz of factorization)



Fast algorithm — Sparse factorization
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Any Athat has Factorization with total nnz O(S)
algorithm for A x with

S arithmetic operations [Burgisser et al., 2013;
(e.g. add/mult) De Sa et al., 2018]
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Universal Representation for Structure:
Outline

1. Background: How to parameterize structured linear maps? Still difficult
Fast algorithm < Sparse matrix factorization ) to learn
Need

Butterfly matrices inductive bias
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[Parker, 1995; Matthieu & LeCun, 2014;
Dao et al., 2019]

Recursive divide-and-conquer

[De Sa et al., 2018]

 Trainable with gradient descent on
nonzero entries of butterfly matrix.

Captures recursive divide-and-conquer structure
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Kaleldoscope: Learnable structured matrices

Deep composition of butterfly matrices: B(l)B(z)TB(S)B(4)TB(5)B(6)T .
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B

Butterfly matrix: Fixed sparsity

Learnable with gradient descent on nonzero entries of butterfly matrices.
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Kaleidoscope hierarchy: Tunable knob

Deep composition of butterfly matrices: B(l)B(z)TB(S)B(4)TB(5)B(6)T .

(J {J

\Bﬁ)T

B

From very compressed (BBT)?( to general matrices (BBT)2W)
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Kaleldoscope hierarchy: Expressiveness

Matrix Min params / FLOPs Butterfly params / FLOPs
DFT, DCT, Hadamard, Conv ©(Nlog N) O(Nlog N)
Permutation ©(Nlog N) O(Nlog N)
s-Sparse O(s) O(slog N)
Rank 7 O(rN) O(rNlog N)
Arithmetic circuit (s total gates, depth d) O(s) O(dslog s)
(I\/Iain theory result [informal]: A
Any matrix with a fast Kaleidoscope matrix
multiplication algorithm =) representation
(i.e. small arithmetic circuit) with few parameters

\_

Captures all fast linear maps
with almost tight parameter count / FLOPS (up to log factor)
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—fficiency

« Each butterfly: 2N log N parameters, O(N log N) multiplication algorithm
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—fficiency

« Each butterfly: 2N log N parameters, O(N log N) multiplication algorithm
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Training (GPU): within 2x of cuFFT
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Inference (CPU): within 3-5x of FFTPACK

Practically efficient in memory and speed



Universal Representation for Structure

1. Background: How to parameterize fast linear maps?
Fast algorithm < Sparse matrix factorization

Butterfly matrices
2. Kaleidoscope matrices: learnable end-to-end, efficient and expressive

Capture all structured linear maps (nearly tight # param. & run time).

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.

17



Depthwise
separable
convolution

Depthwise
Conv

[

Fixed
Channel Shuffle

[

Grouped
1x1 Conv

Cinput >

ShuffleNet

e
Replacing hand-crafted CNN channel shuffle
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e
Replacing hand-crafted CNN channel shuffle

Image classification results on ImageNet (1.3M images)

# Params ImageNet top-1 accuracy

0.5x width ShuffleNet 1.0M 57.1%

0.5x width ShuffleNet w/ Kaleidoscope 1.1M 99.5%

ShuffleNet 2.5M 65.3% 1-2%
ShuffleNet w/ Kaleidoscope 2.8M 66.5% improvement

Replacing fixed channel shuffle with learnable Kaleidoscope matrices
Improves accuracy
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Simplified speech preprocessing pipeline

Kaleidoscope matrices to replace complicated, hand-
engineered preprocessing pipelines

Standard Filter bank/MFSC features

Framing A UEIES FFT M IS Normalize
emphasis function mel scale

. ” " ' i
Framing .
matrix

Kaleidoscope pipeline
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Kaleidoscope pipeline is competitive with MFSC

Phoneme error rate on TIMIT speech recognition dataset
(lower is better)

Model # Params Phoneme Error Rate
MFSC + LSTM 14.3M 14.2%

Kaleidoscope + LSTM  15.5M 14.6%  0.4% gap

Much simpler kaleidoscope pipeline is competitive
with hand-crafted preprocessing
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Universal Representation for Structure:
Summary

1. Background: How to parameterize structured linear maps?
Fast algorithm < Sparse matrix factorization
Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient
Capture all structured linear maps (nearly tight # param. & run time).

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.
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Thank you! Questions?

« Code available at:
https://github.com/HazyResearch/butterfly/

* Blog post (gentle introduction):
hitps://dawn.cs.stanford.edu/2019/06/13/butterfly/

Tri Dao
trid@stanford.edu
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https://github.com/HazyResearch/butterfly/
https://dawn.cs.stanford.edu/2019/06/13/butterf
https://dawn.cs.stanford.edu/2019/06/11/rehashing/

