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• Structured linear maps (low-rank, sparse, DFT, conv…): 
ubiquitous in ML 

• Challenge: they are hand picked
→ don’t adapt to data, requires domain knowledge 

• This talk:
• Building on theory: how to learn a universal family, Kaleidoscope matrices
• Applications: improved CNN channel shuffle, simplified speech pipeline…
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Structured linear maps 
with kaleidoscope matrices



Structured linear maps are ubiquitous in ML

Hand-picked structured linear maps are ubiquitous in ML

+ Fast algorithms
+ Few parameters
- Some approximation
Picking the right structure:
→ good tradeoff for memory and speed
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You’ve heard of them before…



But they’re not easy to pick…
Goals:
• Learnable, integrate with end-to-end 

ML pipeline

• Expressive family to automate design 
choices

• Single efficient implementation, 
↓ engineering effort
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Challenges:
• Doesn’t adapt to data

• Requires domain knowledge

• Different implementations

Is there a learnable, expressive, efficient 
representation for all structured linear maps?



Universal Representation for Structure: 
Outline
1. Background: How to parameterize structured linear maps?

Fast algorithm ↔ Sparse matrix factorization
Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient
Capture all structured linear maps (nearly tight # param. & run time). 

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.
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Sparse factorization → Fast algorithm

Complexity: O(total nnz of factorization)
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A = x . . . .



Fast algorithm → Sparse factorization

[Burgisser et al., 2013;
De Sa et al., 2018]
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De Sa, C., Gu, A., Puttagunta, R., Ré, C., Rudra, A. A Two-Pronged Progress in Structured Dense Matrix Vector Multiplication. SODA, 2018.

Any A that has 
algorithm for A x with 

S arithmetic operations 
(e.g. add/mult) 

A = 

Factorization with total nnz O(S)

. . .
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Still difficult 
to learn

Need 
inductive bias
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Divide-and-Conquer → Butterfly matrices

• Trainable with gradient descent on 
nonzero entries of butterfly matrix.

Captures recursive divide-and-conquer structure
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Recursive divide-and-conquer
[De Sa et al., 2018] 

[Parker, 1995; Matthieu & LeCun, 2014;
Dao et al., 2019]
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Universal Representation for Structure
1. Background: How to parameterize fast linear maps?

Fast algorithm ↔ Sparse matrix factorization
Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient
Capture all structured linear maps (nearly tight # param. & run time). 

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.
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Deep composition of butterfly matrices: 

Kaleidoscope: Learnable structured matrices
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…

B(1)B(2)TB(3)B(4)TB(5)B(6)T . . .

B(1)B(2)TB(3)B(4)TB(5)B(6)T . . .B(1)B(2)TB(3)B(4)TB(5)B(6)T . . .

Learnable with gradient descent on nonzero entries of butterfly matrices. 

Butterfly matrix: Fixed sparsity



Deep composition of butterfly matrices: 

Kaleidoscope hierarchy: Tunable knob
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…

B(1)B(2)TB(3)B(4)TB(5)B(6)T . . .

B(1)B(2)TB(3)B(4)TB(5)B(6)T . . .B(1)B(2)TB(3)B(4)TB(5)B(6)T . . .

From very compressed (𝐵𝐵!)"($) to general matrices (𝐵𝐵!)"(&)



Matrix Min params / FLOPs Butterfly params / FLOPs
DFT, DCT, Hadamard, Conv ⇥(N logN) O(N logN)

Permutation ⇥(N logN) O(N logN)
s-Sparse ⇥(s) O(s logN)
Rank r ⇥(rN) O(rN logN)

Arithmetic circuit (s total gates, depth d) ⇥(s) O(ds log s)

Kaleidoscope hierarchy: Expressiveness

Captures all fast linear maps 
with almost tight parameter count / FLOPs (up to log factor) 
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Any matrix with a fast 
multiplication algorithm

(i.e. small arithmetic circuit)

Kaleidoscope matrix 
representation 

with few parameters

Main theory result [informal]:



• Each butterfly: 2N log N parameters, O(N log N) multiplication algorithm
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B = x . . . .

Efficiency



• Each butterfly: 2N log N parameters, O(N log N) multiplication algorithm

Efficiency

Practically efficient in memory and speed

Training (GPU): within 2x of cuFFT Inference (CPU): within 3-5x of FFTPACK
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cuFFT
Butterfly ButterflyFFTPACK



Universal Representation for Structure
1. Background: How to parameterize fast linear maps?

Fast algorithm ↔ Sparse matrix factorization
Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, efficient and expressive
Capture all structured linear maps (nearly tight # param. & run time). 

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.
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Replacing hand-crafted CNN channel shuffle
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Replacing hand-crafted CNN channel shuffle
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Model # Params ImageNet top-1 accuracy
0.5x width ShuffleNet
0.5x width ShuffleNet w/ Kaleidoscope

1.0M
1.1M

57.1%
59.5%

ShuffleNet
ShuffleNet w/ Kaleidoscope

2.5M
2.8M

65.3%
66.5%

Image classification results on ImageNet (1.3M images)

Replacing fixed channel shuffle with learnable Kaleidoscope matrices
improves accuracy

1-2% 
improvement



Simplified speech preprocessing pipeline
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Kaleidoscope matrices to replace complicated, hand-
engineered preprocessing pipelines

Raw 
waveform Framing Pre-

emphasis
Window 
function FFT Map to 

mel scale Normalize

Standard Filter bank/MFSC features

Kaleidoscope pipeline

Raw 
waveform

Framing Kaleidoscope 
matrix



Kaleidoscope pipeline is competitive with MFSC
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Phoneme error rate on TIMIT speech recognition dataset
(lower is better)

Model # Params Phoneme Error Rate
MFSC + LSTM 14.3M 14.2%
Kaleidoscope + LSTM 15.5M 14.6%

Much simpler kaleidoscope pipeline is competitive 
with hand-crafted preprocessing

0.4% gap



Universal Representation for Structure: 
Summary
1. Background: How to parameterize structured linear maps?

Fast algorithm ↔ Sparse matrix factorization
Butterfly matrices

2. Kaleidoscope matrices: learnable end-to-end, expressive, and efficient
Capture all structured linear maps (nearly tight # param. & run time). 

3. Kaleidoscope matrices: replace hand-crafted structure
Broad applications in vision, speech.
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Thank you! Questions? 
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• Code available at:
https://github.com/HazyResearch/butterfly/

• Blog post (gentle introduction):  
https://dawn.cs.stanford.edu/2019/06/13/butterfly/

Tri Dao
trid@stanford.edu

https://github.com/HazyResearch/butterfly/
https://dawn.cs.stanford.edu/2019/06/13/butterf
https://dawn.cs.stanford.edu/2019/06/11/rehashing/

