
Monarch: Expressive Structured Matrices for Efficient and Accurate

Training

Tri Dao1, Beidi Chen1, Nimit Sohoni1, Arjun Desai1, Michael Poli1, Jessica Grogan2,
Alexander Liu3, Aniruddh Rao3, Atri Rudra2, and Christopher Ré1

1Stanford University
2University at Buffalo, SUNY

2University of Michigan
{trid,beidic,nims,arjundd,poli}@stanford.edu, {jrgrogan,atri}@buffalo.edu,

{avliu,anrao}@umich.edu, chrismre@cs.stanford.edu

April 1, 2022

Abstract

Large neural networks excel in many domains, but they are expensive to train and fine-tune. A
popular approach to reduce their compute/memory requirements is to replace dense weight matrices with
structured ones (e.g., sparse, low-rank, Fourier transform). These methods have not seen widespread
adoption (1) in end-to-end training due to unfavorable efficiency–quality tradeoffs, and (2) in dense-
to-sparse fine-tuning due to lack of tractable algorithms to approximate a given dense weight matrix.
To address these issues, we propose a class of matrices (Monarch) that is hardware-efficient (they are
parameterized as products of two block-diagonal matrices for better hardware utilization) and expressive
(they can represent many commonly used transforms). Surprisingly, the problem of approximating a
dense weight matrix with a Monarch matrix, though nonconvex, has an analytical optimal solution.
These properties of Monarch matrices unlock new ways to train and fine-tune sparse and dense models.
We empirically validate that Monarch can achieve favorable accuracy–efficiency tradeoffs in several
end-to-end sparse training applications: speeding up ViT and GPT-2 training on ImageNet classification
and Wikitext-103 language modeling by 2× with comparable model quality, and reducing the error on
PDE solving and MRI reconstruction tasks by 40%. In sparse-to-dense training, with a simple technique
called “reverse sparsification,” Monarch matrices serve as a useful intermediate representation to speed
up GPT-2 pretraining on OpenWebText by 2× without quality drop. The same technique brings 23%
faster BERT pretraining than even the very optimized implementation from Nvidia that set the MLPerf
1.1 record. In dense-to-sparse fine-tuning, as a proof-of-concept, our Monarch approximation algorithm
speeds up BERT fine-tuning on GLUE by 1.7× with comparable accuracy.

1 Introduction

Large neural networks excel in many domains, but their training and fine-tuning demand extensive computation
and memory [54]. A natural approach to mitigate this cost is to replace dense weight matrices with structured
ones, such as sparse & low-rank matrices and the Fourier transform. However, structured matrices (which can
be viewed as a general form of sparsity) have not yet seen wide adoption to date, due to two main challenges.
(1) In the end-to-end (E2E) training setting, they have shown unfavorable efficiency–quality tradeoffs.
Model efficiency refers how efficient these structured matrices are on modern hardware (e.g., GPUs). Model
quality (performance on tasks) is determined by how expressive they are (e.g., can they represent commonly
used transforms such as convolution or Fourier/cosine transforms that encode domain-specific knowledge).
Existing structured matrices are either not hardware-efficient, or not expressive enough. (2) In the setting
of dense-to-sparse (D2S) fine-tuning of pretrained models, a long-standing problem for most classes of
structured matrices is the lack of tractable algorithms to approximate dense pretrained weight matrices [79].

1

Figure 1: Monarch matrices unlock several ways to train sparse and dense models: end-to-end training a
sparse (Monarch) model can be 2x faster than dense training thanks to its hardware efficiency; sparse-to-dense
“reverse sparsification” can speed up training of large models such as GPT-2; and our dense-to-sparse Monarch
projection algorithm can transfer knowledge from pretrained dense model to Monarch model and speed up
BERT fine-tuning.

Sparse matrices have seen advances in training deep learning models (e.g., pruning [44], lottery tickets [30]),
but most work on (entrywise) sparsification focuses on reducing training or inference FLOPs, which do not
necessarily map to E2E training time on modern hardware (e.g., GPUs). In fact, most sparse training methods
slow down training in wall-clock time [33, 48]. Moreover, sparse matrices are not able to represent commonly
used transforms such as convolution and the Fourier transform. Another class of structured matrices, such
as Fourier, sine/cosine, Chebyshev, are used in specialized domains such as PDE solving [100] and medical
imaging [49]. However, they are difficult to use in E2E training since only specific instances of these structured
matrices have fast GPU implementations (e.g., FFT). Moreover, their applications requires domain expertise
to hand-pick the right transforms. Generalizations of these transforms (e.g., Toeplitz-like [95], orthogonal
polynomial transforms [25], low-displacement rank [53], quasi-separable [27]), though learnable, often lack
efficient implementation on GPUs [98] for E2E training as well. In addition, they have no known tractable
algorithm to approximate a given dense matrix [79], making them difficult to use in D2S fine-tuning.

E2E training. The technical challenge in addressing the efficiency–quality tradeoff of structured matrices
is to find a parameterization that is both efficient on block-oriented hardware (e.g., GPUs) and expressive
(e.g., can represent many commonly used transforms). We propose a class of matrices called Monarch,1

parameterized as products of two block-diagonal matrices (up to permutation), to address this challenge.
This parameterization leverages optimized batch-matrix-multiply (BMM) routines on GPUs, yielding up to
2× speedup compared to dense matrix multiply (Section 5.1.1). We show that the class of Monarch matrices
contains the class of butterfly matrices [80, 12], which can represent any low-depth arithmetic circuits in near
optimal runtime and parameter size [13]. Monarch matrices inherit this expressiveness and thus can represent
many fast transforms (e.g., Fourier, sine/cosine/Chebyshev transforms, convolution) (Proposition 3.2).

Sparse-to-dense (S2D) training, aka “reverse sparsification”. The hardware-efficiency and
expressiveness of Monarch matrices unlock a new way to train dense models: training with Monarch weight
matrices for most of the time and then transitioning to dense weight matrices (Fig. 3). This technique
can be used in cases where sparse training faces representation or optimization difficulties [28] or a dense
model is necessary. One such application is language modeling on large datasets, where a massive number of
parameters are required [54] to memorize the textual patterns [35]. Monarch matrices can serve as a fast
intermediate representation to speed up the training process of the dense model.

D2S fine-tuning. While transitioning from sparse to dense matrices is easy, the reverse direction is
challenging. The main technical difficulty is the projection problem: finding a matrix in a class of structured
matrices that is the closest to a given dense matrix. Only a few specific classes of structured matrices have a
tractable projection solution, such as entrywise sparse matrices (magnitude pruning [97]), low-rank matrices
(the Eckart-Young theorem [26]), and orthogonal matrices (the orthogonal Procrustes problem [93]). For
more expressive classes of structured matrices, projection remains a long-standing problem [79]. For example,
De Sa et al. [16] show that all structured matrices (in the form of arithmetic circuits) can be written as
products of sparse matrices, which can be represented as products of butterfly matrices [13]. There have

1They are named after the monarch butterfly.

2

been numerous heuristics proposed to project on the set of butterfly matrices or products of sparse matrices,
based on iterative first-order optimization [63, 12, 55] or alternating minimization [67]. However, they lack
theoretical guarantees. In contrast, we derive a projection algorithm for our Monarch parameterization and
prove that it finds the optimal solution (Theorem 1). We also derive an algorithm to factorize matrices
that are products of Monarch matrices (Section 3.4). These new algorithms allows us to easily finetune a
pretrained model into a model with Monarch weight matrices (Section 5.3).

We validate our approach empirically in these three settings, showing that our Monarch matrix parame-
terization achieves a favorable efficiency–accuracy tradeoff compared to baselines on a wide range of domains:
text, images, PDEs, MRI.
• In the E2E sparse training setting (Section 5.1), our Monarch matrices model trains 2× faster than

dense models while achieving the same accuracy / perplexity on benchmark tasks (ViT on ImageNet
classification, GPT-2 on Wikitext-103 language modeling). On scientific and medical tasks relying on
hand-crafted fast transforms (PDE solving, MRI reconstruction), Monarch reduces the error by up to 40%
at the same training speed compared to domain-specific Fourier-based methods.

• In the S2D training setting (Section 5.2), our “reverse sparsification” process with Monarch matrices
speeds up GPT-2 pretraining on the large OpenWebText dataset by 2× compared to an optimized
implementation from NVIDIA [94], with comparable upstream and downstream (text classification) quality.
When applied to BERT pretraining, our method is 23% faster than the implementation from Nvidia that
set the MLPerf [72] 1.1 record.

• In the D2S fine-tuning setting (Section 5.3), we show a proof of concept that our Monarch projection
algorithm speeds up BERT fine-tuning. We project a pretrained BERT model to a Monarch matrix model
and fine-tune on GLUE, with 2× fewer parameters, 1.7× faster fine-tuning speed, and similar average
GLUE accuracy as the dense model.2

2 Related Work and Background

2.1 Related Work

Sparse Training. Sparse training is an active research topic. There has been inspiring work along the line
of compressing models such as neural network pruning and lottery tickets [44, 45, 30]. Pruning methods
usually eliminate neurons and connections through iterative retraining [44, 45, 92] or at runtime [66, 23].
Although both Monarch and pruning methods aim to produce sparse models, we differ in our emphasis on
overall efficiency, whereas pruning mostly focuses on inference efficiency and disregards the cost of finding
the smaller model. Lottery tickets [30, 31, 32] are a set of small sub-networks derived from a larger dense
network, which outperforms their parent networks in convergence speed and potentially in generalization.
Monarch can be roughly seen as a class of manually constructed lottery tickets.

Structured Matrices. Structured matrices are those with subquadratic (o(n2) for dimension n× n)
number of parameters and runtime. Examples include sparse and low-rank matrices, and fast transforms
(Fourier, Chebyshev, sine/cosine, orthogonal polynomials). They are commonly used to replace the dense
weight matrices of deep learning models, thus reducing the number of parameters and training/inference
FLOPs. Large classes of structured matrices (e.g., Toeplitz-like [95], low-displacement rank [53], quasi-
separable [27]) have been shown to be able to represent many commonly used fast transforms. For example,
De Sa et al. [16] show that a simple divide-and-conquer scheme leads to a fast algorithm for a large class of
structured matrices. Our work builds on butterfly matrices [80, 12], which have been shown to be expressive
but remain hardware-inefficient. Pixelated butterfly [6] has attempted to make butterfly matrices more
hardware-friendly, but at the cost of reduced expressiveness. Furthermore, it is not known if one can directly
decompose a dense pretrained model to a model with butterfly weight matrices without retraining.

2.2 Butterfly Matrices

Our work builds on recent work on butterfly matrices. Dao et al. [12] introduced the notion of a butterfly matrix
as a certain product of permuted block-diagonal matrices, inspired by the Cooley-Tukey fast Fourier transform

2Monarch code is available at https://github.com/HazyResearch/fly

3

https://github.com/HazyResearch/fly

algorithm [11]. They encode the divide-and-conquer structure of many fast multiplication algorithms. Dao
et al. [13] showed that all structured matrices can be written as products of such butterfly matrices, and this
representation has optimal memory and runtime complexity up to polylogarithmic factors. We now review
these definitions (following [13]).

A butterfly factor of size k (where k is even) is a matrix of the form

[
D1 D2

D3 D4

]
where each Di is a

k
2 ×

k
2 diagonal matrix. We call this class of matrices BF (k,k).

A butterfly factor matrix of size n and block size k is a block diagonal matrix of n
k butterfly factors of

size k:
diag

(
B1,B2, . . . ,Bn

k

)
,

where Bi ∈ BF (k,k). We call this class of matrices BF (n,k).
Finally, a butterfly matrix of size n = 2s is a matrix M that can be expressed as a product of butterfly

factor matrices:
M = BnBn/2 . . .B2,

where each Bi ∈ BF (n,i). We denote the set of size-n butterfly matrices by B(n). Equivalently, M can be
written in the following form:

M = Bn

[
M1 0
0 M2

]
,

where Bn ∈ BF (n,n) and M1,M2 ∈ B(n
2).

Dao et al. [13] further introduce the kaleidoscope matrix hierarchy : the class BB∗(n) is the set of matrices
of the form M1M

∗
2 for M1,M2 ∈ B(n), and the class (BB∗(n))we is the set of all matrices of the form(

w∏
i=1

Mi

)
[1:n, 1:n] where each Mi ∈ BB∗(e·n). (A∗ denotes the conjugate transpose of A.) When the size n

is clear from context, we will omit the superscript (n) (i.e., just write B,BB∗, etc.). As shown by Theorem
1 of Dao et al. [13], the kaleidoscope hierarchy can represent any structured matrix with nearly-optimal
parameters and runtime: if M is an n×n matrix such that multiplying any vector v by M can be represented

as a linear arithmetic circuit with depth d and s total gates, then M ∈ (BB∗(n))
O(d)
O(s/n).

3 Monarch: Definition & Algorithms

In Section 3.1, we introduce Monarch matrices, and describe how they relate to butterfly matrices. In
Section 3.2 we show that the class of Monarch matrices is at least as expressive as the class of butterfly
matrices, while admitting a practically efficient representation. In particular, many fast transforms (e.g.,
Fourier, convolution) can be represented as a Monarch matrix or as the product of two or four Monarch
matrices (Proposition 3.2). In Section 3.3, we show how to project onto the set of Monarch matrices. This
allows us to tractably approximate a given matrix (e.g., a dense pretrained weight matrix) with a Monarch
matrix, unlocking new applications (cf. Section 5). In Section 3.4, we show how to recover the individual
factors of the larger class of products of two Monarch matrices.

3.1 Monarch Parametrization for Square Matrices

Inspired by the 4-step FFT algorithm [3], we propose the class of Monarch matrices, each parametrized as
the product of two block-diagonal matrices up to permutation:

Definition 3.1. Let n = m2. An n× n Monarch matrix has the form:

M = PLP>R,

where L and R are block-diagonal matrices, each with m blocks of size m×m, and P is the permutation
that maps [x1, . . . , xn] to [x1, x1+m, . . . , x1+(m−1)m, x2, x2+m, . . . ,
x2+(m−1)m, . . . , xm, x2m, . . . , xn].

4

Figure 2: Monarch matrices are parametrized as products of two block-diagonal matrices up to permutation,
allowing efficient multiplication algorithm that leverages batch matrix multiply.

We call this the Monarch parametrization. We denote the class of all matrices that can be written in this
form as M(n) (dropping the superscript when clear from context). Fig. 2 illustrates this parametrization.

We now provide more intuition for this parametrization and connect it to butterfly matrices. For ease of
exposition, suppose B ∈ B(n) where n is a power of 4. Then let L′ be obtained by multiplying together the
first log2 n

2 butterfly factor matrices in the butterfly factorization of B, and R by multiplying together the

last log2 n
2 butterfly factor matrices. (We detail this more rigorously in Theorem 4.)

The matrix R is block-diagonal withm =
√
n dense blocks, each block of sizem×m: R = diag(R1, . . . ,Rm).

The matrix L′ is composed of m×m blocks of size m×m, where each block is a diagonal matrix:

L′ =

D11 . . . D1m

...
. . .

...
Dm1 . . . Dmm

 .
The matrix L′ can also be written as block-diagonal with the same structure as R after permuting the

rows and columns. Specifically, let P be the permutation of Definition 3.1. We can interpret P as follows: it
reshapes the vector x of size n as a matrix of size m×m, transposes the matrix, then converts back into a
vector of size n. Note that P = P>. Then we can write

L = PL′P>, where L = diag(L1, . . . ,Lm).

Hence, up to permuting rows and columns, L′ is also a block-diagonal matrix of m dense blocks, each of size
m×m.

Thus we can write B = PLP>R, where L, R, and P are as in Definition 3.1. So, B ∈ B(n) implies that
B ∈M(n).

Products of Monarch Matrices. Another important class of matrices (due to their expressiveness, cf.
Proposition 3.2) is the class MM∗: matrices that can be written as M1M∗2 for some M1,M2 ∈M. Further,
(MM∗)2 denotes the class of matrices that can be written M1M2 for M1,M2 ∈MM∗.

Extension to Rectangular Matrices. In practice, we also want a way to parametrize rectangular weight
matrices, and to increase the number of parameters of Monarch matrices to fit different applications (analogous
to the rank parameter in low-rank matrices and the number of nonzeros in sparse matrices). We make the
simple choice to increase the block size of the block-diagonal matrices in the Monarch parametrization, and
to allow rectangular blocks. More details are in Appendix C.

3.2 Expressiveness and Efficiency

We remark on the expressiveness of Monarch matrices and their products (ability to represent many structured
transforms), and on their computational and memory efficiency.

3.2.1 Expressiveness

As described in Section 3.1, any matrix B ∈ B(n) can be written in the Monarch butterfly representation, by
simply condensing the log2 n total factors into two matrices. Thus, the Monarch butterfly representation
is strictly more general than the original butterfly representation (as there also exist matrices in M(n) but

5

not B(n)). In other words, for a given size n, M⊃ B; similarly MM∗ ⊃ BB∗. In particular, Dao et al. [13]
showed that the following matrix classes are contained in BB∗, which implies they are in MM∗ as well:

Proposition 3.2. The matrix class MM∗ can represent convolution, Hadamard transform, Toeplitz matri-
ces [37], and AFDF matrices [74]. The matrix class (MM∗)2 can represent the Fourier transform, discrete
sine and cosine transforms (DST/DCT), the (HD)3 [106] class, Fastfood [62], and ACDC matrices [74].

3.2.2 Efficiency

Parameters. A Monarch matrix M = PLP>R is described by 2n
√
n parameters: L,R both have

√
n

dense blocks of size
√
n×
√
n, for a total parameter count of n

√
n each. The permutation P is fixed, and

thus doesn’t add any parameters. Speed. To multiply by M, we need to multiply by a block diagonal
matrix R, permute, multiply by a block diagonal matrix L, and finally permute. All four of these steps
can be implemented efficiently. The total number of FLOPs is O(n

√
n), which is more the O(n log n) for a

butterfly matrix. However, since we can leverage efficient block-diagonal multiplication (e.g., batch matrix
multiply), Monarch multiplication is easy to implement and is fast in practice (2x faster than dense multiply,
cf. Section 5).

3.3 Projection on the Set M of Monarch Matrices

Given our class of structured matrices, a natural question is the projection problem: finding a Monarch
matrix that is the closest to a given dense matrix. We show that this problem has an analytical optimal
solution, and show how to compute it efficiently. This allows us to project dense models to Monarch models,
enabling D2S fine-tuning (Section 5.3).

We formalize the problem: for a given matrix A, find

argmin
M∈M

‖A−M‖2F . (1)

Even though this problem is nonconvex (as M is parametrized as the product of two matrices), in
Theorem 1 we show that there exists an analytical solution (full proof in Appendix D). This is analogous
to the Eckart-Young theorem that establishes that optimal low-rank approximation is obtained from the
SVD [26].

Theorem 1. Given an n×n matrix A, there is an O(n5/2)-time algorithm that optimally solves the projection
problem (1), and returns the Monarch factors L and R.

We now derive this algorithm (Algorithm 1) by examining the structure of a Monarch matrix M.
We first rewrite the steps of Monarch matrix-vector multiplication (i.e., computing Mx). The main idea

is to view the input x, which is a vector of size n = m2, as a 2D tensor of size m×m. Then the two matrices
L and R in the Monarch parametrization M = PLP>R correspond to batched matrix multiply along one
dimension of x, followed by batched matrix multiply along the other dimension of x. Thus we view x as a 2D
tensor of size m×m, and each of L and R as a 3D tensor of size m×m×m.

Steps to multiply x by a Monarch matrix M = PLP>R:
1. Multiply R by x: ykj =

∑
iRkjixki, to obtain an output y that is a 2D tensor of size m×m.

2. Multiply PLP> by y: z`j =
∑

k Lj`kykj , to obtain an output that is a 2D tensor of size m×m.
3. Reshape z back into a vector of size n, and return this.
We can thus write the output z as z`j =

∑
k,i Lj`kRkjixki.

Since M = PLP>R, we can write:
M`jki = Lj`kRkji. (2)

Note that here we view M as a 4D tensor of size m×m×m×m.
When viewed as a 4D tensor, the structure of the matrix M becomes apparent, and the solution to the

projection problem is easy to see. Let’s examine Eq. (2): M`jki = Lj`kRkji. We see that this reshaped tensor
version of M is simply m ·m batches of rank-1 matrices: we batch over the dimensions k and j, and each
batch is simply a rank-1 matrix (pjk)(qjk)> for some length-m vectors pjk,qjk.

6

Figure 3: With the “reverse sparsification” process, Monarch matrices can speed up GPT-2 training by 2x.

Therefore, the projection objective (Eq. (1)) can be broken up into the sum of m ·m independent terms,
each term corresponding to a block of A of size m×m. As the structure of a Monarch matrix forces each
block to have rank 1 as described above, the solution to the projection problem becomes apparent: given
a matrix A, reshape it to a 4D tensor of size m×m×m×m, and take the rank-1 approximation of each
batch with the SVD, which (after reshaping) yields the factors L,R of the desired matrix M ∈M. (Note
that if A ∈M itself, this algorithm recovers the factors such that A = PLP>R.)

Algorithm 1 Projection on the set of Monarch matrices

Require: Matrix A ∈ Rn×n, with n = m2.
Reshape A into a 4D tensor Ã of size m×m×m×m, where Ã`jki = A(`−1)m+j,(k−1)m+i for `, j, k, i =
1, . . . ,m.
for 1 ≤ j, k ≤ m do

Let M̃jk = Ã:,j,k,: of size m×m.

Compute the best rank-1 approximation of M̃jk as ujkv>jk with the SVD of Ã.
end for
Let R̃ be the m×m×m tensor where R̃kji = (vjk)i.

Let L̃ be the m×m×m tensor where L̃j`k = (ujk)`.

Return L̃, R̃ as block-diagonal matrices L,R (where the bth block of L,R are L̃b,:,:, R̃b,:,: respectively)

3.4 Factorization of MM∗ Matrices

In the previous section, we saw how to project onto the set M. As Theorem 3.2 shows, the broader class
MM∗ also encompasses many important linear transforms. In this section, we present an algorithm to
compute the Monarch factorization of a given matrix M ∈MM∗, under mild assumptions. This allows us to
store and apply M efficiently.

Specifically, observe that if M ∈MM∗, we can write M = (PLP>R)(R′∗PL′∗P>) = (PL1P>)R(PL2P>)
for block-diagonal L1,L2,R and the permutation P of Definition 3.1. Then, we can compute L1,L2,R in
such a factorization under Assumption 3.3, as stated in Theorem 2. (Note that the factorization is not
unique.)

Assumption 3.3. Assume that (1) M ∈MM∗ is invertible and (2) M can be written as (PL1P>)R(PL2P>)
where the blocks of R have no zero entries.

Theorem 2. Given an n × n matrix M ∈ MM∗ satisfying Assumption 3.3, there is an O(n5/2)-time
algorithm to find its Monarch factors L1,R,L2.

To understand how to do this, define M̃ = P>MP and observe that M̃ = L1(PRP>)L2 =A1
A2

. . .
Am


 D11 D12 . . . D1m

D21 D22 . . . D2m

. . .
. . .

. . .
. . .

Dm1 Dm2 . . . Dmm


C1

C2

. . .
Cm


7

Figure 4: With Algorithm 1 for our Monarch parameterization, we can convert a pretrained model into a
model with Monarch weight matrices and speed up downstream fine-tuning.

where m =
√
n, the Ai’s and Cj ’s denote the m×m diagonal blocks of L1,L2 respectively, and each Dij

is an m×m diagonal matrix. If we write M̃ as a block matrix with m×m blocks each of size m×m, then

we see that the block M̃ij is equal to AiDijCj . Notice that M is invertible only if all the Ai’s and Cj ’s are
(since if any one of these is singular, then L1 or L2 is singular).

Thus, our goal is to find matrices Â1, . . . , Âm, Ĉ1, . . . , Ĉm and diagonal matrices D̂11, . . . , D̂mm such

that M̃ij = ÂiD̂ijĈj for all i, j; this represents a valid Monarch factorization of M.
To provide intuition for how to do this, let’s analyze a simple case in which all the Dij ’s are the identity

matrix. Then we have the set of equations AiCj = M̃ij . Again assume the Ai’s and Cj ’s are invertible, so

each M̃ij is as well. Suppose we set Ĉ1 = I (identity matrix). Then we can immediately read off Âi = M̃i1 for

all i. We can then set Ĉj = Â−1
1 M̃1j for all j. Let’s now check that this strategy gives a valid factorization,

i.e., that M̃ij = ÂiĈj for all i, j. We have ÂiĈj = M̃i1M̃
−1
11 M̃1j . Recalling that in the “true” factorization

we have M̃ij = AiCj , this equals (AiC1)(A1C1)−1(A1Cj) = AiCj , as desired.
In the general case, we must deal with the diagonal Dij matrices as well. We will no longer be able

to freely set Ĉ1 = I. However, once we find a proper choice of Ĉ1, we can use it to find all the Âi’s and
Ĉj ’s. We can find such a Ĉ1 via the idea of simultaneous diagonalization; for space reasons, we defer a full
description of our algorithm (Algorithm 2), and its analysis, to Appendix D.

4 Using Monarch Matrices in Model Training

We can use our class of Monarch matrices to parameterize weight matrices of deep learning models in several
settings.
• In the E2E sparse training setting, we replace the dense weight matrices of a baseline model with Monarch

matrices with the same dimension, initialize them randomly, and train as usual. Most of our baseline
models are Transformers, and we replace the projection matrices in the attention blocks, along with the
weights of the feed-forward network (FFN) blocks, with Monarch matrices. The Monarch parameterization
is differentiable, and we rely on autodifferentiation to train with first-order methods such as Adam [57].

• In the S2D training setting, we first replace the dense weight matrices of a baseline model with Monarch
matrices, then train the sparse model for about 90% of the usual number of iterations. We then convert the
Monarch matrices to dense matrices (by simply multiplying the factors L and R along with permutations),
and continue training for the remaining 10% of the iterations. Compared to dense end-to-end training, we
train for the same number of iterations, but the first 90% of the iterations are faster due to the hardware
efficiency of Monarch matrices.

• In the D2S fine-tuning setting, we start with a dense pretrained model (e.g., BERT), and project the
dense weight matrices (e.g., in the attention blocks and FFN blocks) on the set of Monarch matrices using
the algorithm in Section 3.3. We then fine-tune the resulting model on downstream tasks (e.g., GLUE),
using first-order methods.

We typically set the number of blocks in the block-diagonal matrices to be between 2 and 4 based on the
parameter budgets (25% – 50% of the dense model).

8

5 Experiments

We validate our approach empirically, showing that our Monarch matrix parametrization achieves a favorable
efficiency–accuracy tradeoff compared to baselines on a wide range of domains (text, images, PDEs, MRI), in
three settings (E2E training, S2D training, and D2S fine-tuning):
• In Section 5.1.1, on image classification and language modeling benchmarks, such as ViT / MLP Mixer on

ImageNet and GPT-2 on Wikitext-103, Monarch is 2× faster to train than dense models, while achieving
the same accuracy / perplexity. In Section 5.1.2, in scientific and medical domains where special transforms
(Fourier) are common, Monarch outperforms Fourier transform based methods on PDE solving, with up to
40% lower error, and on MRI reconstruction attains up to 15% higher pSNR and 3.8% higher SSIM.

• In Section 5.1.2, we show that on the large OpenWebText dataset, reverse sparsification (training with
Monarch weight matrices for most of the time, then transitioning to dense weight matrices) speeds up the
pretraining of GPT-2 models by 2× compared to the dense model, with no loss in upstream or downstream
quality. Moreover, reverse sparsification speeds up BERT pretraining by 23% even compared to the
implementation from Nvidia that set the MLPerf [72] 1.1 record.

• In Section 5.3, as a proof of concept, we demonstrate that our Monarch approximation algorithm can
improve fine-tuning efficiency for pretrained models. We show that compressing BERT to a Monarch
matrix model performs comparably to a finetuned dense model on GLUE, with 2× fewer parameters and
1.7× faster finetuning speed.

5.1 End-to-End Training

5.1.1 Benchmark Tasks: Image Classification, Language Modeling

We show that replacing dense matrices with Monarch matrices in ViT, MLP-Mixer, and GPT-2 can speed up
training by up to 2× without sacrificing model quality in Tables 1 and 2.

Setup. We use the popular vision benchmark, ImageNet [17]. We choose recent popular Vision
Transformer [24], and MLP-Mixer [99] as representative base dense models. For language modeling, we
evaluate GPT-2 [86] on WikiText-103 [73].

Table 1: The performance of Monarch matrices and ViT / MLP-Mixer on ImageNet, including the number of
parameters and FLOPs. We measure the Top-1 accuracy and the training time speedup compared to the
corresponding dense model.

Model ImageNet acc. Speedup Params FLOPs

Mixer-S/16 74.0 - 18.5M 3.8G
Monarch-Mixer-S/16 73.7 1.7× 7.0M 1.5G

Mixer-B/16 77.7 - 59.9M 12.6G
Monarch-Mixer-B/16 77.8 1.9× 20.9M 5.0G

ViT-S/16 79.4 - 48.8M 9.9G
Monarch-ViT-S/16 79.1 1.9× 19.6M 3.9G

ViT-B/16 78.5 - 86.6M 17.6G
Monarch-ViT-B/16 78.9 2.0× 33.0M 5.9G

Table 2: Performance of Monarch matrices and GPT-2-Small/Medium on WikiText-103, including the # of
parameters and FLOPs. Monarch achieves similar perplexity (ppl) but 2.0× faster.

Model PPL Speedup Params FLOPs

GPT-2-Small 20.6 - 124M 106G
Monarch-GPT-2-Small 20.7 1.8× 72M 51G

GPT-2-Medium 20.9 - 355M 361G
Monarch-GPT-2-Medium 20.3 2.0× 165M 166G

9

5.1.2 PDE solving and multi-coil MRI reconstruction

Many scientific or medical imaging tasks rely on specialized transforms such as the Fourier transform. We
show that replacing the fixed Fourier transform with the more expressive Monarch matrices yields higher
model quality (lower reconstruction error) with comparable model speed.

Solving PDEs with Monarch Neural Operators. We follow the experimental setting in FNO [65]
and apply a Monarch–based neural operator to the task of solving the Navier–Stokes PDE. Compared to
baseline U-Nets [90], TF-Nets [103], ResNets [47] and FNOs [65], neural operators based on Monarch improve
solution accuracy across spatial resolutions by up to 40% (Table 3).

Non-periodic boundary conditions. Traditional spectral methods based on Fourier transform work
best with periodic boundary conditions and forcing terms. However, PDEs of practical interest often exhibit
non–periodic or even unknown boundary conditions. Monarch operators are not constrained to the Fourier
transform and can thus still learn the solution operator with excellent accuracy.

Table 3: Benchmarks on Navier-Stokes (fixing resolution 64 × 64 for both training and testing). Decreasing
the viscosity coefficient ν makes the dynamics more chaotic.

Model v = 10−3 v = 10−4 v = 10−5

U-Net 0.025 0.205 0.198
TF-Net 0.023 0.225 0.227
ResNet 0.070 0.287 0.275
FNO 0.017 0.178 0.155

Monarch-NO 0.010 0.145 0.136

Accelerated MRI Reconstruction. We characterize the utility of Monarch-based FFT operations for
accelerated MRI reconstruction, a task which requires methods with both structured Fourier operators and
dealiasing properties to recover high quality images. On the clinically-acquired 3D MRI SKM-TEA dataset
[20], Monarch-SENSE (mSENSE) enhances image quality by over 1.5dB pSNR and 2.5% SSIM compared to
zero-filled SENSE and up to 4.4dB and 3.8% SSIM compared to U-Net baselines in data-limited settings.
Setup details are available in Appendix E.5.

Expressive FFT. By definition, standard IFFT in zero-filled SENSE cannot dealias the signal, resulting
in artifacts in the reconstructed image. mSENSE replaces the inverse FFT (IFFT) operation in standard
SENSE with learnable Monarch matrices. Thus, mSENSE preserves the structure of the Fourier transform
while learning to reweight frequencies to suppress aliasing artifacts. Across multiple accelerations, mSENSE
achieved up to +1.5dB and 2.5% improvement in peak signal-to-noise ratio (pSNR) and structural similarity
(SSIM), respectively (Table 4).

Data Efficiency. While CNNs have shown promise for MRI reconstruction tasks, training these networks
requires extensive amounts of labeled data to avoid overfitting. However, large data corpora are difficult
to acquire in practice. mSENSE can be trained efficiently with limited supervised examples. In few shot
settings, mSENSE can outperform U-Net by +4.4dB (≈15%) and 3.8% SSIM (Table 5).

Table 4: Mean ± standard error of the mean of conventional and Monarch-SENSE (mSENSE) on dual-echo
(E1,E2) MRI reconstruction at multiple acceleration factors (Acc.).

pSNR (dB) (↑) SSIM (↑)
Acc. Model E1 E2 E1 E2

2
SENSE 32.8±0.2 35.4±0.2 0.871±0.003 0.865±0.003

mSENSE 34.3±0.2 36.6±0.2 0.886±0.002 0.882±0.003

3
SENSE 30.9±0.2 33.5±0.2 0.819±0.004 0.795±0.004

mSENSE 32.3±0.2 34.6±0.2 0.843±0.003 0.820±0.004

4
SENSE 30.1±0.2 32.8±0.2 0.789±0.004 0.753±0.005

mSENSE 31.2±0.2 33.5±0.2 0.812±0.003 0.767±0.005

10

Table 5: Impact of number of training examples (N) on dual-echo MRI reconstruction at 2x acceleration.

pSNR (dB) (↑) SSIM (↑)
N Model E1 E2 E1 E2

N/A SENSE 32.8±0.2 35.4±0.2 0.871±0.003 0.865±0.003

1
U-Net 29.4±0.2 34.4±0.3 0.848±0.004 0.857±0.004

mSENSE 33.8±0.2 36.0±0.2 0.886±0.003 0.867±0.003

2
U-Net 29.9±0.3 35.1±0.3 0.858±0.003 0.871±0.003

mSENSE 34.0±0.2 36.4±0.2 0.883±0.002 0.877±0.003

3
U-Net 31.0±0.3 35.2±0.3 0.866±0.003 0.867±0.004

mSENSE 33.9±0.2 36.5±0.2 0.882±0.002 0.878±0.003

5
U-Net 31.4±0.3 35.6±0.2 0.877±0.002 0.870±0.003

mSENSE 33.9±0.2 36.5±0.2 0.881±0.002 0.877±0.003

5.2 Sparse-to-Dense Training (reverse sparsification)

GPT-2 pretraining. On the large OpenWebtext dataset [36], we train a GPT-2 model with Monarch
weight matrices for 90% of the training iterations, then relax the constraint on the weight matrices and train
them as dense matrices for the remaining 10% of the iterations. We call this technique “reverse sparsification.”
Previous sparse training techniques often don’t speed up training, whereas our hardware-efficient Monarch
matrices do. Therefore we can use them as an intermediate step to pretrain a large language model (GPT-2)
in 2× less time. We also evaluate its downstream quality on zero-shot generation from [34] and classification
tasks from [108], achieving comparable performance to the dense counterparts (Table 6).

Table 6: The performance (accuracy) of GPT-2-medium trained with Monarch reverse sparsification and
with conventional dense training on text classification benchmarks.

Model OpenWebText (ppl) Speedup Classification (avg acc)

GPT-2m 18.0 - 38.9
Monarch-GPT-2m 18.0 2× 38.8

In Fig. 5, we show the training time of the dense GPT-2 model, along with the Monarch GPT-2 model.
After training the Monarch model for 90% of the time, in the last 10% of the training steps, by transitioning
to dense weight matrices, the model is able to reach the same performance of another model that was trained
with dense weight matrices from scratch. By training with Monarch matrices for 90% of the time, we reduce
the total training time by 2×.

BERT pretraining. On the Wikipedia + BookCorpus datasets [110], we train a BERT-large model with
Monarch weight matrices for 70% of the time and transition to dense weight matrices for the remaining
30% of the time, which yields the same pretraining loss as conventional dense training. In Table 7, we
compare the total training time to several baseline implementations: the widely-used implementation
from HuggingFace [104], the more optimized implementation from Megatron [94], and the most optimized
implementation we know of from Nvidia that was used to set MLPerf 1.1 training speed record. Our method
is 3.5x faster than HuggingFace and 23% faster than Nvidia’s MLPerf 1.1 implementation3. Experiment
details are in Appendix E.4.

5.3 Dense-to-Sparse Fine-tuning

We show that our Monarch approximation algorithm allows us to efficiently use pretrained models, such as
speeding up BERT finetuning on GLUE.

BERT finetuning. We take the BERT pretrained weights, approximate them with Monarch matrices, and
finetune the resulting model on the 9 GLUE tasks. The results in Table 8 shows that we obtain a Monarch
finetuned model with similar quality to the dense BERT model, but with 1.7× faster finetuning speed. This

3Our result is not an official MLPerf submission. We train BERT for both phase 1 (sequence length 128) and phase 2
(sequence length 512) according to the standard BERT training recipe[22], while MLPerf only measures training time for phase 2.

11

Table 7: The total training time of BERT-large trained with Monarch reverse sparsification and with
conventional dense training on 8 A100-40GB GPUs (DGX A100). Training consists of two phases, phase
1 with sequence length 128 and phase 2 with sequence length 512. Monarch training is 3.5x faster than
HuggingFace and 23% faster than Nvidia’s MLPerf 1.1 implementation.

Implementation Training time (h)

HuggingFace 84.5
MegaTron 52.5

Nvidia MLPerf 1.1 30.2
Nvidia MLPerf 1.1 + DeepSpeed 29.3

Monarch (ours) 23.8

Figure 5: Time required (in A100 GPU hours) to reach the same perplexity (18.0) for GPT-2-small on
OpenWebText. With “reverse sparsification”, Monarch can speed up GPT-2 training by 2×.

serves as a proof of concept, and we expect further speedup if additional model compression techniques are
applied (e.g., quantization, kernel fusion).

Table 8: The performance of Monarch matrices in finetuning BERT on GLUE.

Model GLUE (avg) Speedup Params FLOPs

BERT-base 78.6 - 109M 11.2G
Monarch-BERT-base 78.3 1.5× 55M 6.2G

BERT-large 80.4 - 335M 39.5G
Monarch-BERT-large 79.6 1.7× 144M 14.6G

6 Conclusion

We propose Monarch, a novel matrix parameterization that inherits the expressiveness of butterfly matrices
and thus can represent many fast transforms. Our parameterization leverages optimized batch matrix multiply
routines on GPUs, yielding up to 2× speedup compared to dense matrix multiply. We derive an efficient
algorithm for projecting an arbitrary dense matrix on the set of Monarch factors. Our algorithm allows us to
easily fine-tune a pretrained model into a model with Monarch weight matrices. As a result, Monarch matrices
unlock new ways for faster end-to-end training, sparse-to-dense training, and dense-to-sparse fine-tuning of
large neural networks. By making structured matrices practical, our work is a first step towards unlocking
tremendous performance improvements in applying sparse models to wide-ranging ML applications (including
science and medicine). We anticipate this work can inspire more future work on advancing machine learning
models for interdisciplinary research with limited computational resources.

Acknowledgments

We thank Laurel Orr, Xun Huang, Trevor Gale, Jian Zhang, Victor Bittorf, Sarah Hooper, Neel Guha, and
Michael Zhang for their helpful discussions and feedback on early drafts of the paper.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under Nos.
CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML); ARL under

12

No. W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under No. N000141712266 (Unifying Weak
Supervision); ONR N00014-20-1-2480: Understanding and Applying Non-Euclidean Geometry in Machine
Learning; N000142012275 (NEPTUNE); NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba,
TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce,
Total, the HAI-GCP Cloud Credits for Research program, the Stanford Data Science Initiative (SDSI),
and members of the Stanford DAWN project: Facebook, Google, and VMWare. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views, policies, or endorsements, either expressed or
implied, of NIH, ONR, or the U.S. Government.

References

[1] Ailon, N., Leibovitch, O., and Nair, V. Sparse linear networks with a fixed butterfly structure: theory
and practice. In Uncertainty in Artificial Intelligence, pp. 1174–1184. PMLR, 2021.

[2] Akema, R., Yamagishi, M., and Yamada, I. Approximate simultaneous diagonalization of matrices via
structured low-rank approximation. arXiv preprint arXiv:2010.06305, 2020.

[3] Bailey, D. H. FFTs in external or hierarchical memory. The journal of Supercomputing, 4(1):23–35,
1990.

[4] Bunse-Gerstner, A., Byers, R., and Mehrmann, V. Numerical methods for simultaneous diagonalization.
SIAM Journal on Matrix Analysis and Applications, 1993.

[5] Chaudhari, A. S., Sandino, C. M., Cole, E. K., Larson, D. B., Gold, G. E., Vasanawala, S. S., Lungren,
M. P., Hargreaves, B. A., and Langlotz, C. P. Prospective deployment of deep learning in MRI: A
framework for important considerations, challenges, and recommendations for best practices. Journal
of Magnetic Resonance Imaging, 2020.

[6] Chen, B., Dao, T., Liang, K., Yang, J., Song, Z., Rudra, A., and Ré, C. Pixelated butterfly: Simple
and efficient sparse training for neural network models. In International Conference on Learning
Representations (ICLR), 2022.

[7] Child, R., Gray, S., Radford, A., and Sutskever, I. Generating long sequences with sparse transformers.
arXiv preprint arXiv:1904.10509, 2019.

[8] Choromanski, K., Rowland, M., Chen, W., and Weller, A. Unifying orthogonal Monte Carlo methods.
In International Conference on Machine Learning, pp. 1203–1212, 2019.

[9] Cole, E. K., Pauly, J. M., Vasanawala, S. S., and Ong, F. Unsupervised MRI reconstruction with
generative adversarial networks. arXiv preprint arXiv:2008.13065, 2020.

[10] Conrad, K. The minimal polynomial and some applications.

[11] Cooley, J. W. and Tukey, J. W. An algorithm for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297–301, 1965.

[12] Dao, T., Gu, A., Eichhorn, M., Rudra, A., and Ré, C. Learning fast algorithms for linear transforms
using butterfly factorizations. In International Conference on Machine Learning (ICML), 2019.

[13] Dao, T., Sohoni, N., Gu, A., Eichhorn, M., Blonder, A., Leszczynski, M., Rudra, A., and Ré, C.
Kaleidoscope: An efficient, learnable representation for all structured linear maps. In International
Conference on Learning Representations (ICLR), 2020.

[14] Darestani, M. Z. and Heckel, R. Accelerated MRI with un-trained neural networks. IEEE Transactions
on Computational Imaging, 7:724–733, 2021.

13

[15] Darestani, M. Z., Chaudhari, A., and Heckel, R. Measuring robustness in deep learning based compressive
sensing. arXiv preprint arXiv:2102.06103, 2021.

[16] De Sa, C., Gu, A., Puttagunta, R., Ré, C., and Rudra, A. A two-pronged progress in structured dense
matrix vector multiplication. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1060–1079. SIAM, 2018.

[17] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255.
Ieee, 2009.

[18] Desai, A. D., Gunel, B., Ozturkler, B. M., Beg, H., Vasanawala, S., Hargreaves, B. A., Ré, C., Pauly,
J. M., and Chaudhari, A. S. Vortex: Physics-driven data augmentations for consistency training for
robust accelerated MRI reconstruction. arXiv preprint arXiv:2111.02549, 2021.

[19] Desai, A. D., Ozturkler, B. M., Sandino, C. M., Vasanawala, S., Hargreaves, B. A., Re, C. M., Pauly,
J. M., and Chaudhari, A. S. Noise2recon: A semi-supervised framework for joint MRI reconstruction
and denoising. arXiv preprint arXiv:2110.00075, 2021.

[20] Desai, A. D., Schmidt, A. M., Rubin, E. B., Sandino, C. M., Black, M. S., Mazzoli, V., Stevens, K. J.,
Boutin, R., Re, C., Gold, G. E., et al. SKM-TEA: A dataset for accelerated MRI reconstruction with
dense image labels for quantitative clinical evaluation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[21] Dettmers, T. and Zettlemoyer, L. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

[22] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[23] Dong, X., Chen, S., and Pan, S. J. Learning to prune deep neural networks via layer-wise optimal brain
surgeon. arXiv preprint arXiv:1705.07565, 2017.

[24] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[25] Driscoll, J. R., Healy Jr, D. M., and Rockmore, D. N. Fast discrete polynomial transforms with
applications to data analysis for distance transitive graphs. SIAM Journal on Computing, 26(4):
1066–1099, 1997.

[26] Eckart, C. and Young, G. The approximation of one matrix by another of lower rank. Psychometrika, 1
(3):211–218, 1936.

[27] Eidelman, Y. and Gohberg, I. On a new class of structured matrices. Integral Equations and Operator
Theory, 34(3):293–324, 1999.

[28] Evci, U., Pedregosa, F., Gomez, A., and Elsen, E. The difficulty of training sparse neural networks.
arXiv preprint arXiv:1906.10732, 2019.

[29] Fan, T., Xu, K., Pathak, J., and Darve, E. Solving inverse problems in steady-state navier-stokes
equations using deep neural networks. arXiv preprint arXiv:2008.13074, 2020.

[30] Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

[31] Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. Stabilizing the lottery ticket hypothesis.
arXiv preprint arXiv:1903.01611, 2019.

14

[32] Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Linear mode connectivity and the lottery ticket
hypothesis. In International Conference on Machine Learning, pp. 3259–3269. PMLR, 2020.

[33] Gale, T., Elsen, E., and Hooker, S. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[34] Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster, C., Golding, L., Hsu, J., McDonell, K.,
Muennighoff, N., Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou, A. A
framework for few-shot language model evaluation, September 2021. URL https://doi.org/10.5281/

zenodo.5371628.

[35] Geva, M., Schuster, R., Berant, J., and Levy, O. Transformer feed-forward layers are key-value memories.
arXiv preprint arXiv:2012.14913, 2020.

[36] Gokaslan, A., Cohen, V., Ellie, P., and Tellex, S. Openwebtext corpus, 2019.

[37] Gray, R. M. Toeplitz and circulant matrices: A review. Foundations and Trends® in Communications
and Information Theory, 2(3):155–239, 2006.

[38] Gray, S., Radford, A., and Kingma, D. P. GPU kernels for block-sparse weights. arXiv preprint
arXiv:1711.09224, 3, 2017.

[39] Griswold, M. A., Jakob, P. M., Heidemann, R. M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., and
Haase, A. Generalized autocalibrating partially parallel acquisitions (grappa). Magnetic Resonance in
Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 47(6):
1202–1210, 2002.

[40] Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo: Recurrent memory with optimal polynomial
projections. In Advances in neural information processing systems (NeurIPS), 2020.

[41] Guo, C., Hsueh, B. Y., Leng, J., Qiu, Y., Guan, Y., Wang, Z., Jia, X., Li, X., Guo, M., and Zhu, Y.
Accelerating sparse dnn models without hardware-support via tile-wise sparsity. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE, 2020.

[42] Haldar, J. P. Low-rank modeling of local k-space neighborhoods (loraks) for constrained MRI. IEEE
transactions on medical imaging, 33(3):668–681, 2013.

[43] Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T., and Knoll, F.
Learning a variational network for reconstruction of accelerated MRI data. Magnetic resonance in
medicine, 79(6):3055–3071, 2018.

[44] Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[45] Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both weights and connections for efficient neural
networks. arXiv preprint arXiv:1506.02626, 2015.

[46] Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S., Elsen, E., Vajda, P., Paluri, M., Tran, J.,
et al. Dsd: Dense-sparse-dense training for deep neural networks. arXiv preprint arXiv:1607.04381,
2016.

[47] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[48] Hooker, S. The hardware lottery. arXiv preprint arXiv:2009.06489, 2020.

[49] Hsieh, J. Computed tomography: principles, design, artifacts, and recent advances, volume 114. SPIE
press, 2003.

[50] Jayakumar, S. M., Pascanu, R., Rae, J. W., Osindero, S., and Elsen, E. Top-KAST: Top-K always
sparse training. arXiv preprint arXiv:2106.03517, 2021.

15

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

[51] Jolicoeur-Martineau, A., Li, K., Piché-Taillefer, R., Kachman, T., and Mitliagkas, I. Gotta go fast
when generating data with score-based models. arXiv preprint arXiv:2105.14080, 2021.

[52] Jurafsky, D. and Martin, J. H. Speech and language processing, volume 3. Pearson London, 2014.

[53] Kailath, T., Kung, S.-Y., and Morf, M. Displacement ranks of matrices and linear equations. Journal
of Mathematical Analysis and Applications, 68(2):395–407, 1979.

[54] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361,
2020.

[55] Khalitov, R., Yu, T., Cheng, L., and Yang, Z. Sparse factorization of large square matrices. arXiv
preprint arXiv:2109.08184, 2021.

[56] Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural controlled differential equations for irregular
time series. arXiv preprint arXiv:2005.08926, 2020.

[57] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

[58] Knoll, F., Hammernik, K., Zhang, C., Moeller, S., Pock, T., Sodickson, D. K., and Akcakaya, M.
Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current
approaches, trends, and issues. IEEE signal processing magazine, 37(1):128–140, 2020.

[59] Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. Machine learning–
accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118(21),
2021.

[60] Lagunas, F., Charlaix, E., Sanh, V., and Rush, A. M. Block pruning for faster transformers. arXiv
preprint arXiv:2109.04838, 2021.

[61] Lahiri, A., Wang, G., Ravishankar, S., and Fessler, J. A. Blind primed supervised (blips) learning for
mr image reconstruction. arXiv preprint arXiv:2104.05028, 2021.

[62] Le, Q., Sarlós, T., and Smola, A. Fastfood-computing hilbert space expansions in loglinear time. In
International Conference on Machine Learning, pp. 244–252, 2013.

[63] Le Magoarou, L. and Gribonval, R. Flexible multilayer sparse approximations of matrices and
applications. IEEE Journal of Selected Topics in Signal Processing, 10(4):688–700, 2016.

[64] Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

[65] Li, Z., Kovachki, N. B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A., et al.
Fourier neural operator for parametric partial differential equations. In International Conference on
Learning Representations, 2020.

[66] Lin, J., Rao, Y., Lu, J., and Zhou, J. Runtime neural pruning. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[67] Lin, R., Ran, J., Chiu, K. H., Chesi, G., and Wong, N. Deformable butterfly: A highly structured and
sparse linear transform. Advances in Neural Information Processing Systems, 34, 2021.

[68] Liu, T. and Zenke, F. Finding trainable sparse networks through neural tangent transfer. In International
Conference on Machine Learning, pp. 6336–6347. PMLR, 2020.

[69] Lustig, M., Donoho, D., and Pauly, J. M. Sparse MRI: The application of compressed sensing for rapid
mr imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine, 58(6):1182–1195, 2007.

16

[70] Mardani, M., Gong, E., Cheng, J. Y., Vasanawala, S. S., Zaharchuk, G., Xing, L., and Pauly, J. M. Deep
generative adversarial neural networks for compressive sensing MRI. IEEE transactions on medical
imaging, 38(1):167–179, 2018.

[71] Massaroli, S., Poli, M., Sonoda, S., Suzuki, T., Park, J., Yamashita, A., and Asama, H. Differentiable
multiple shooting layers. arXiv preprint arXiv:2106.03885, 2021.

[72] Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson, D., Tang, H., Wei, G.-Y.,
Bailis, P., Bittorf, V., et al. Mlperf training benchmark. Proceedings of Machine Learning and Systems,
2:336–349, 2020.

[73] Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

[74] Moczulski, M., Denil, M., Appleyard, J., and de Freitas, N. ACDC: a structured efficient linear layer.
In International Conference on Learning Representations, 2016.

[75] Morcos, A. S., Yu, H., Paganini, M., and Tian, Y. One ticket to win them all: generalizing lottery
ticket initializations across datasets and optimizers. arXiv preprint arXiv:1906.02773, 2019.

[76] Munkhoeva, M., Kapushev, Y., Burnaev, E., and Oseledets, I. Quadrature-based features for kernel
approximation. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Processing Systems 31, pp. 9165–9174. Curran Associates,
Inc., 2018.

[77] Ong, F. and Lustig, M. Beyond low rank+ sparse: Multiscale low rank matrix decomposition. IEEE
journal of selected topics in signal processing, 10(4):672–687, 2016.

[78] Orseau, L., Hutter, M., and Rivasplata, O. Logarithmic pruning is all you need. Advances in Neural
Information Processing Systems, 33, 2020.

[79] Pan, V. Y. Structured matrices and polynomials: unified superfast algorithms. Springer Science &
Business Media, 2012.

[80] Parker, D. S. Random butterfly transformations with applications in computational linear algebra.
1995.

[81] Pensia, A., Rajput, S., Nagle, A., Vishwakarma, H., and Papailiopoulos, D. Optimal lottery tickets via
subsetsum: Logarithmic over-parameterization is sufficient. arXiv preprint arXiv:2006.07990, 2020.

[82] Peste, A., Iofinova, E., Vladu, A., and Alistarh, D. Ac/dc: Alternating compressed/decompressed
training of deep neural networks. Advances in Neural Information Processing Systems, 34, 2021.

[83] Poli, M., Massaroli, S., Yamashita, A., Asama, H., Park, J., et al. Hypersolvers: Toward fast continuous-
depth models. Advances in Neural Information Processing Systems, 33, 2020.

[84] Pruessmann, K. P., Weiger, M., Scheidegger, M. B., and Boesiger, P. Sense: sensitivity encoding for fast
MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic
Resonance in Medicine, 42(5):952–962, 1999.

[85] Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan,
A., and Edelman, A. Universal differential equations for scientific machine learning. arXiv preprint
arXiv:2001.04385, 2020.

[86] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[87] Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

17

[88] Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deepspeed: System optimizations enable training
deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.

[89] Ravishankar, S., Moore, B. E., Nadakuditi, R. R., and Fessler, J. A. Low-rank and adaptive sparse
signal (lassi) models for highly accelerated dynamic imaging. IEEE transactions on medical imaging,
36(5):1116–1128, 2017.

[90] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image computing and computer-assisted intervention,
pp. 234–241. Springer, 2015.

[91] Sandino, C. M., Cheng, J. Y., Chen, F., Mardani, M., Pauly, J. M., and Vasanawala, S. S. Compressed
sensing: From research to clinical practice with deep neural networks: Shortening scan times for
magnetic resonance imaging. IEEE signal processing magazine, 37(1):117–127, 2020.

[92] Sanh, V., Wolf, T., and Rush, A. M. Movement pruning: Adaptive sparsity by fine-tuning. arXiv
preprint arXiv:2005.07683, 2020.

[93] Schönemann, P. H. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):
1–10, 1966.

[94] Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. Megatron-LM: Training
multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053,
2019.

[95] Sindhwani, V., Sainath, T., and Kumar, S. Structured transforms for small-footprint deep learning. In
Advances in Neural Information Processing Systems, pp. 3088–3096, 2015.

[96] Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Pruning neural networks without any data by
iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467, 2020.

[97] Tewarson, R. P. Sparse matrices, volume 69. Academic Press New York, 1973.

[98] Thomas, A., Gu, A., Dao, T., Rudra, A., and Ré, C. Learning compressed transforms with low
displacement rank. In Advances in neural information processing systems, pp. 9052–9060, 2018.

[99] Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Keysers,
D., Uszkoreit, J., Lucic, M., et al. Mlp-Mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601, 2021.

[100] Trefethen, L. N. Spectral methods in MATLAB. SIAM, 2000.

[101] Vahid, K. A., Prabhu, A., Farhadi, A., and Rastegari, M. Butterfly transform: An efficient fft based
neural architecture design. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12021–12030. IEEE, 2020.

[102] Wang, C., Zhang, G., and Grosse, R. Picking winning tickets before training by preserving gradient
flow. arXiv preprint arXiv:2002.07376, 2020.

[103] Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu, R. Towards physics-informed deep learning
for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1457–1466, 2020.

[104] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R.,
Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao,
T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

18

https://www.aclweb.org/anthology/2020.emnlp-demos.6

[105] Yaman, B., Hosseini, S. A. H., Moeller, S., Ellermann, J., Uğurbil, K., and Akçakaya, M. Self-supervised
physics-based deep learning MRI reconstruction without fully-sampled data. In 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI), pp. 921–925. IEEE, 2020.

[106] Yu, F. X., Suresh, A. T., Choromanski, K. M., Holtmann-Rice, D. N., and Kumar, S. Orthogonal
random features. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 29, pp. 1975–1983. Curran Associates, Inc., 2016.

[107] Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Tay, F. E., Feng, J., and Yan, S. Tokens-to-token ViT:
Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

[108] Zhao, T. Z., Wallace, E., Feng, S., Klein, D., and Singh, S. Calibrate before use: Improving few-shot
performance of language models. arXiv preprint arXiv:2102.09690, 2021.

[109] Zhu, M. and Gupta, S. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

[110] Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler, S. Aligning
books and movies: Towards story-like visual explanations by watching movies and reading books. In
Proceedings of the IEEE international conference on computer vision, pp. 19–27, 2015.

19

A Extended Related Work

In this section, we extend the related works referenced in the main paper and discuss them in detail.

Sparse Training. Our work is loosely related to neural network pruning. By iteratively eliminating neurons
and connections, pruning has seen great success in compressing complex models. Han et al. [44, 45] put forth
two naive but effective algorithms to compress models up to 49x and maintain comparable accuracy. Li et al.
[64] employ filter pruning to reduce the cost of running convolution models up to 38 %, Lin et al. [66] prunes
the network at runtime, hence retaining the flexibility of the full model. Dong et al. [23] prunes the network
locally in a layer by layer manner. Sanh et al. [92] prunes with deterministic first-order information, which
is more adaptive to pretrained model weights. Lagunas et al. [60] prunes transformers models with block
sparsity pattern during fine-tuning, which leads to real hardware speed up while maintaining the accuracy.
Zhu & Gupta [109] finds large pruned sparse network consistently outperform the small dense networks with
the same compute and memory footprints. Although both our and all the pruning methods are aiming to
produce sparse models, we differ in our emphasis on the overall efficiency, whereas pruning mostly focuses on
inference efficiency and disregards the cost in finding the smaller model.

There has been more recent work on sparse methods that focuses on speeding up training and not just
inference, such as SNFS [21], RigL [21], Top-KAST [50]. These methods often focus on FLOP counts, which
may not correlate well with wall-clock time on modern hardware (e.g., GPUs). Block-sparsity is another
approach that exploits the block-oriented nature of GPUs [38, 7, 41]. Sparse models have also been found
useful to improve the training process of dense models. For example, sparsity can be used to regularize dense
models to improve accuracy [46], or to alternate between sparse and dense training to ease deployment [82].
Our sparse-to-dense reverse sparsification instead focuses on speeding up dense training, where the sparse
model is used for efficiency and not regularization.

In addition, models proposed in our work can be roughly seen as a class of manually constructed lottery
tickets. Lottery tickets Frankle & Carbin [30] are a set of small sub-networks derived from a larger dense
network, which outperforms their parent networks in convergence speed and potentially in generalization. A
huge number of studies are carried out to analyze these tickets both empirically and theoretically: Morcos
et al. [75] proposed to use one generalized lottery tickets for all vision benchmarks and got comparable results
with the specialized lottery tickets; Frankle et al. [31] improves the stability of the lottery tickets by iterative
pruning; Frankle et al. [32] found that subnetworks reach full accuracy only if they are stable against SGD
noise during training; Orseau et al. [78] provides a logarithmic upper bound for the number of parameters it
takes for the optimal sub-networks to exist; Pensia et al. [81] suggests a way to construct the lottery ticket
by solving the subset sum problem and it’s a proof by construction for the strong lottery ticket hypothesis.
Furthermore, follow-up works [68, 102, 96] show that we can find tickets without any training labels.

Structured matrices and butterfly matrices. Structured matrices are those with asymptotically fast
matrix-vector multiplication algorithm (o(n2) time complexity) and few parameters (o(n2) space complexity).
Common examples include sparse & low-rank matrices, and fast transforms such as Fourier transform,
Chebyshev transform, Legendre transform, and more generally orthogonal polynomial transforms. These
transforms have been widely used in data preprocessing (e.g., DFT in speech processing [52]) and kernel
approximation [62, 106]. Many generalizations of these transforms have been used in machine learning to
replace dense weight matrices [95, 98, 40]. De Sa et al. [16] shows that any structured matrix (in the form of
arithmetic circuits) can be written as product of sparse matrices, and Dao et al. [13] shows that products
of butterfly matrices can represent these structured matrices almost optimally in terms of runtime and
memory. The class of butterfly matrices [80] have also been used in kernel models [76, 8] and deep learning
models [101, 67, 1].

Neural Operators for PDEs. Deep learning has found application in the domain of differential equations
and scientific computing [85], with methods developed for prediction and control problems [56, 71], as well as
acceleration of numerical schemes [83, 51]. Specific to the partial differential equations (PDEs) are approaches
designed to learn solution operators [87, 29, 65], and hybridized solvers [59], evaluated primarily on classical
fluid dynamics.

20

The promise of these approaches is to offer, at the cost of an initial training procedure, accurate yet faster
solutions than an appropriate numerical method tuned for a specific problem, which can then be leveraged for
real-time forecasting or within larger feedback loops. Nonetheless, optimal design of neural operators remains
an open problem, with most relying on fast Fourier transforms (FFT) or standard dense neural architectures.
Instead, neural operators based on Monarch are capable of approximating all fast transforms, thus allowing
automated optimization towards a suitable transform on a given PDE problem.

MRI. Accelerated multi-coil MRI is an essential mechanism for reducing long scan times and making certain
scan types feasible. In multi-coil MRI, data is acquired in the spatial Fourier domain (a.k.a k-space) across
multiple coils (sensors). To reduce scan time, this data is sampled below the required rate for recovering the
underlying signal (i.e. Nyquist rate), which results in signal aliasing (see Appendix E.5). In these settings,
direct application of the inverse fast Fourier transform (FFT) cannot suppress aliasing artifacts.

Classical MRI reconstruction approaches supplement the FFT by leveraging shared information across
multiple coils and strong analytical priors to regularize image recovery objectives. SENSE-based methods
jointly dealias images across multiple coils and reweight the final image based on the spatial sensitivity profile
of each coil [84]. Compressed sensing promotes image sparsity in transformation domains (e.g. Fourier,
wavelet) while enforcing data consistency between the Fourier transform of the reconstructed image and the
observed measurements [69]. Low-rank methods enforce low rank structure across slowly-varying dimensions
or local patches in the data [77, 89, 42]. Additionally, GRAPPA-based techniques optimize kernels to
directly interpolate missing k-space samples to promote smoothness in the Fourier domain [39]. Despite their
efficacy, these methods have long reconstruction times, require explicit analytical priors, and require careful
hyperparameter fine-tuning.

CNNs have shown promise as a fast-at-inference, learnable alternative to classical MRI reconstruction
methods [58]. In supervised learning, fully convolutional networks (e.g. U-Net [90] or unrolled networks
[91, 43]) learn a mapping between paired zero-filled and fully-sampled, ground truth images. However,
supervised methods require a large fully-sampled (labeled) data corpus and are sensitive to distribution drifts
due to patient, hardware, and sequence heterogeneity [15]. To reduce dependence on labeled data, unsupervised
methods have used generative adversarial networks [9, 70], self-supervised learning [105], dictionary learning
[61], and untrained networks [14]. Despite their label efficiency, these techniques still underperform supervised
methods and are also sensitive to distribution shift. Recently, a family of semi-supervised reconstruction
methods demonstrated label efficiency and robustness to physics-driven perturbations, such as changes in signal-
to-noise ratio or patient motion [19, 18]. However, these methods require large amounts of unlabeled data,
which can be difficult to curate in few-shot settings. Thus, despite their success in controlled environments,
prospective clinical deployment of these models has been stifled [5].

In our work, we propose a model with a single FFT-initialized factorized Monarch matrix. Such a matrix
can provide the benefits of both a simple linearized transformation like FFT and a learnable mechanism to
remove aliasing artifacts resulting from the undersampled k-space. The smaller learnable parameter set may
reduce overfitting in data-limited settings while preserving the transformation structure of Fourier matrices.
Thus, our approach can be interpreted as a hybrid between analytically-constrained classical methods and
data-dependent CNNs.

B Notation Review

Throughout this paper, we use lowercase to denote scalars (e.g., k), lowercase boldface to denote vectors (e.g.,
v), and uppercase boldface to denote matrices (e.g., A).

I denotes the identity matrix. We use A> to denote the transpose of a matrix and A∗ to denote the
conjugate transpose of a matrix. All results in this paper apply to matrices over the either the reals R or the
complex numbers C; when the field under consideration can be either one of these, we denote it by F.

We use 1-indexing throughout this paper except where explicitly stated.

21

C General Monarch Matrix Parametrization

In Section C.1, we define a parametrization for square Monarch matrices of different “block sizes” (i.e., not
necessarily

√
n), and prove some basic properties about them. In Section C.2, we further extend this to define

rectangular Monarch matrices, and prove some basic properties about them.
Note: In this section, we use 0-indexing rather than 1-indexing, for notational convenience.

C.1 General square matrices

C.1.1 Parametrization

In this section, we define a more general Monarch parametrization for square matrices, allowing for different
“block sizes.” Like Definition 3.1, the parametrization involves the product of a permuted block-diagonal
matrix with another block-diagonal matrix; the difference is that we now allow the matrices L and R to have
diagonal blocks of different sizes. Thus, the permutations applied to L (to turn it into a block matrix where
each block matrix is diagonal) will correspondingly also be different.

First, in Definition C.1, we define notation for a class of block-diagonal matrices.

Definition C.1 (Class BD(b,n)). Let b ∈ (1, n) be an integer that divides n. For 0 ≤ i < n
b , let Ri ∈ Fb×b be

a b× b “block” matrix. Then define the matrix R with block size b as follows:

R = diag
(
R0, . . . ,Rn

b−1

)
. (3)

(Note that the number of possible nonzero values in R is n
b · b

2 = nb.) We denote the class of all matrices

R expressible in this form by BD(b,n). Note that this class is closed under (conjugate) transposition and
contains the identity matrix.

Next, in Definition C.2, we define notation for a class of block matrices whose blocks are diagonal.

Definition C.2 (Class DB(b,n)). Let b ∈ (1, n) be an integer that divides n. For 0 ≤ i, j < b, let Di,j ∈ Fb×b

be a b× b diagonal matrix. Then let L be an n× n matrix with the following form:

L =

 D0,0 . . . D0,nb−1

...
. . .

...
Dn

b−1,0 . . . Dn
b−1,nb−1

 (4)

(Note that the number of possible nonzero values in L is
(
n
b

)2 · b = n2

b .) We denote the class of all matrices

L expressible in this form by DB(b,n). Note that this class is closed under (conjugate) transposition and
contains the identity matrix. As we show in Appendix C.1.2, L can be written as a block-diagonal matrix
with b blocks of size n

b ×
n
b (i.e., a matrix in BD(n

b , n)), multiplied on the left and right with appropriate

permutation matrices. We denote the class of all matrices L expressible in this form by DB(b,n). Note that
this class is closed under (conjugate) transposition. As we show in Appendix C.1.2, L can be written as a
block-diagonal matrix with b blocks of size n

b ×
n
b (i.e., a matrix in BD(n

b , n)), multiplied on the left and right
with appropriate permutation matrices.

Using these two definitions, we define the class of Monarch matrices with a given block size.

Definition C.3 (Class M(b,n)). Let b ∈ (1, n) be an integer that divides n. A Monarch matrix of size n× n
and “block size b” is a matrix of the form:

M = LR (5)

where L ∈ DB(b,n) and R ∈ BD(b,n).

We denote the class of all matrices M expressible in this form by M(b,n). Observe that when b =
√
n,

this is exactly the matrix class M(n) in Definition 3.1. (In other words, M(n) is shorthand for M(
√
n,n).)

Note that a matrix in M(b,n) is represented by n2

b + nb parameters.

We remark that M(b,n) ⊃ B(n) for all block sizes b ∈ (1, n) that divide n.
Based on Definition C.19, we define the classes MM∗(b,n) and M∗M(b,n)::

22

Definition C.4 (Class MM∗(b,n), M∗M(b,n)). Let b ∈ (1, n) be an integer that divides n and suppose
M1,M2 ∈ M(b,n). We define MM∗(b,n) to be the the class of all matrices M expressible in the form
M = M1M

∗
2.

We define M∗M(b,n) to be the the class of all matrices M expressible in the form M = M∗
1M2.

Observe that when b =
√
n, MM∗(b,n) is exactly the matrix class MM∗(n) defined in Section 3. Note

that a matrix in MM∗(b,n) or M∗M(b,n). is represented by 2n2

b + 2nb parameters.
Finally, we define the following “Monarch hierarchy” based on the kaleidoscope hierarchy of [13]:

Definition C.5 (Class (MM∗(b,n))we). Let b ∈ (1, n) be an integer that divides n. We define the matrix
class (MM∗(b,n))we as the set of all matrices M that can be expressed as

M =

 w∏
i=1

Mi

 [1 : n, 1 : n] (6)

where each Mi ∈MM∗(b,e·n).

Note that a matrix in (MM∗(b,n))we is represented by 2w e2n2

b + 2wenb parameters.

C.1.2 Properties

Here we show some properties of the matrix classes defined above. We first show some basic equivalent
ways to define these classes. We then show (Theorem 3) that the matrices in DB(b,n) are permuted block-
diagonal matrices; specifically, that they can be converted to matrices in BD(n

b ,n) by applying the appropriate
permutation. Finally, we state an expressivity result for the general “Monarch hierarchy” which follows from
Theorem 1 of [13].

First, we define a class of permutations. Let 1 ≤ b ≤ n be integers such that b divides n. We will need to
express each index 0 ≤ i < n in “block form.” More specifically:

Definition C.6. Let i ≥ 0, b ≥ 1 be integers. Then define

i0 = i mod b,

and

i1 =

⌊
i

b

⌋
.

We use the notation i ≡ (i1, i0)b to denote the representation above. In particular, if i ≡ (i1, i0)b, then we
have

i = i1 · b+ i0

Using this notation, we define the following class of permutations:

Definition C.7. Let b ∈ [1, n] be an integer that divides n. Let i ≡ (i1, i0)b. Define

σ(b,n)(i) = i0 ·
n

b
+ i1. (7)

That is, σ(b,n)(i) ≡ (i0, i1)n
b
. Let P(b,n) denote the n× n permutation matrix defined by the permutation

σ(b,n).

Intuitively, P(b,n) can be interpreted as reshaping a length-n vector into an b× n
b matrix in row-major

order, transposing the result, and then flattening this back into a vector (again in row-major order).
Now, we restate the formulation in Definition C.1 equivalently as:

Proposition C.8. A matrix R satisfies Equation (3) (i.e., R ∈ BD(b,n)) if and only if the following holds
for any 0 ≤ i, j < n. Let i ≡ (i1, i0)b and j ≡ (j1, j0)b. Then

1. if i1 6= j1, then R[i, j] = 0.

23

2. Else (i.e., when i1 = j1), then R[i, j] = Ri1 [i0, j0].

We restate the formulation in Definition C.2 equivalently as:

Proposition C.9. A matrix L satisfies Equation (4) (i.e., L ∈ DB(b,n)) if and only if the following holds for
any 0 ≤ i, j < n. Let i ≡ (i1, i0)b and j ≡ (j1, j0)b. Then

1. if i0 6= j0, then L[i, j] = 0.

2. Else, (i.e., when i0 = j0), then L[i, j] = Di1,j1 [i0, i0].

We will argue the following:

Theorem 3. Let 1 ≤ b ≤ n such that b divides n. Recall that P(b,n) is the permutation matrix defined by the

permutation σ(b,n). Let L be a matrix in DB(b,n). Then we have

R′ = P(b,n) · L ·P>(b,n),

where R′ ∈ BD(n
b , n).

Proof. We first note that multiplying an n× n matrix on the right (and left resp.) by P>(b,n) = P(n
b ,n) (and

P(b,n) resp.) permutes the columns (and rows resp.) of the matrix according to σ(b,n).
4 This implies that for

any 0 ≤ i, j < n:
R′[σ(b,n)(i), σ(b,n)(j)] = L[i, j]. (8)

To complete the proof, we will argue that R′ satisfies the two conditions in Proposition C.8.
Towards this end, let 0 ≤ i, j < n be arbitrary indices and further, define i = (i1, i0)b and j = (j1, j0)b.

Then note that σ(b,n)(i) = (i0, i1)n
b

and σ(b,n)(j) = (j0, j1)n
b
.

By Proposition C.9, we have that if i0 6= j0, then L[i, j] = 0. Note that i0 6= j0 satisfies the pre-condition
for base size n

b for indices (σ(b,n)(i), σ(b,n)(j)) in item 1 in Proposition C.8. Then by Eq. (8), we have that
R′[σ(b,n)(i), σ(b,n)(j)] = 0, which satisfies item 1 in Proposition C.8.

Now consider the case that i0 = j0; then by item 2 in Proposition C.9, we have that L[i, j] = Di1,j1 [i0, i0].
Note that i0 = j0 satisfies the pre-condition for base size n

b for indices (σ(b,n)(i), σ(b,n)(j)) in item 2

in Proposition C.8 if we define R′i0 ∈ Fn
b×

n
b as follows:

R′i0 [i1, j1] = Di1,j1 [i0, i0].

Note that the above implies that
R′ = diag

(
R′0, . . . ,R

′
b−1

)
,

where R′· is as defined in the above paragraph. This means R′ ∈ BD(n
b ,n), since each block R′i0 is a matrix of

size n
b ×

n
b .

We now briefly note some alternate ways to express matrices in MM∗(b,n).

Proposition C.10. For any M ∈MM∗(b,n), we can write M = (P>(b,n)L1P(b,n))R(P>(b,n)L2P(b,n)), where

L1,L2 ∈ BD(n
b ,n) and R ∈ BD(b,n).

Proof. By definition (see Definition C.1 and Definition C.2), if M ∈ MM∗(b,n), we can write M =
(L′1R1)(L′2R2)∗ = L′1(R∗1R2)L′∗2 , where L′1,L

′
2 ∈ DB(b,n),R1,R2 ∈ BD(b,n).

Notice that since R∗1,R2 are both block-diagonal with the same structure (i.e., both have blocks of
size b × b), their product R is also in BD(b,n). Also, by Theorem 3 we can write L1 = P(b,n)L

′
1P
>
(b,n),

L2 = P(b,n)L
′
2P
>
(b,n), where L1,L2 are both in BD(n

b ,n) (i.e., block diagonal with blocks of size n
b ×

n
b).

Thus, we can write M = (P>(b,n)L1P(b,n))R(P>(b,n)L2P(b,n)), where L1,L2 ∈ BD(n
b ,n) and R ∈ BD(b,n).

4This uses the fact that
(
σ(b,n)

)−1
= σ(n

b
,n) (which means P(n

b
,n) = P>

(b,n)
since the inverse of a permutation matrix is its

transpose).

24

We use the above to show a simple relationship between MM∗(b,n) and M∗M(b,n).

Proposition C.11. If M ∈MM∗(b,n), then P(b,n)MP>(b,n) ∈M
∗M(n

b ,n). Conversely, if M ∈M∗M(b,n),

then P>(b,n)MP(b,n) ∈M∗M(n
b ,n).

Proof. Suppose M ∈MM∗(b,n). By Proposition C.10 we can write M = (P>(b,n)L1P(b,n))R(P>(b,n)L2P(b,n)),

where L1,L2 ∈ BD(n
b ,n) and R ∈ BD(b,n). Thus P(b,n)MP>(b,n) = L1(P(b,n)RP>(b,n))L2.

Letting L′1 = L1,L
′
2 = L∗2,R

′
1 = P(b,n)RP>(b,n), and R′2 = I, we have L′1,L

′
2 ∈ BD(n

b ,n), R′1,R
′
2 ∈ DB(n

b ,n),

and L1(P(b,n)RP>(b,n))L2 = L′1R
′
1R
′∗
2 L′∗2 = (L′1R

′
1)(L′2R

′
2)∗ = M′

1M
′∗
2 , where M′

1 = L′1R
′
1,M

′
2 = L′2R

′
2, so

M′
1,M

′
2 ∈M∗M(n

b ,n).
Now instead suppose M ∈ M∗M(b,n). So M = M∗

1M2 = R∗1L
∗
1L2R2 for some R1,R2 ∈ BD(b,n) and

L1,L2 ∈ DB(b,n). Thus by Theorem 3 (and the fact that BD(b,n) is closed under conjugate transposition)
we can write R∗1 = P>(n

b ,n)R
′
1P(n

b ,n) = P(b,n)R
′
1P
>
(b,n) for some R′1 ∈ DB(n

b ,n), and similarly, can write

R2 = P(b,n)R
′
2P
>
(b,n) for some R′2 ∈ DB(n

b ,n).

So P>(b,n)MP(b,n) = R′1(P(b,n))
>L∗1)(L2P(b,n)))R

′
2 = R′1(P>(b,n)L

∗
1P(b,n))(P

>
(b,n)L2P(b,n))R

′
2 = (R′1L′1)(L′2R′2),

where L′1 = P>(b,n)L
∗
1P(b,n), L′2 = P>(b,n)L2P(b,n) are in BD(n

b ,n) by Theorem 3. Thus letting M′
1 = R′1L

′
1,

M′
2 = R∗2L′∗2 , we have M = M′

1M
′∗
2 with M′

1,M
′
2 ∈M∗(

n
b ,n).

We now show that the class M(b,n) strictly contains the class B(n) of n× n butterfly matrices (as defined
in Dao et al. [13]). We first show two elementary “helper” results.

Proposition C.12. If b, c ∈ (1, n) are such that b divides c and c divides n, then BD(b,n) ⊆ BD(c,n).

Proof. Suppose R ∈ BD(b,n). Then by Proposition C.8, R[i, j] = 0 whenever
⌊
i
b

⌋
6=
⌊
j
b

⌋
. Thus, whenever⌊

i
c

⌋
6=
⌊
j
c

⌋
, R[i, j] = 0, since

⌊
i
c

⌋
6=
⌊
j
c

⌋
implies

⌊
i
b

⌋
6=
⌊
j
b

⌋
by the assumption that b divides c. Applying

Proposition C.8 again, this means R ∈ BD(c,n) as well.

Proposition C.13. If b, c ∈ (1, n) are such that b divides c and c divides n, then DB(c,n) ⊆ DB(b,n).

Proof. Suppose L ∈ DB(c,n). Then by Proposition C.9, L[i, j] = 0 whenever (i mod c) 6= (j mod c). Thus,
whenever (i mod b) 6= (j mod b), L[i, j] = 0, since (i mod b) 6= (j mod b) implies (i mod c) 6= (j mod c) by
the assumption that b divides c. Applying Proposition C.9 again, this means L ∈ DB(b,n) as well.

Theorem 4. Let n ≥ 4 be a power of 2. The class of matrices B(n) is a subset of the class M(b,n), for all
b ∈ (1, n) that divide n. When n ≥ 512 it is a strict subset.

Proof. Recall from Section 2.2 that if B ∈ B(n), it has a butterfly factorization B = BnBn/2 . . .B2, where

each Bi ∈ BF (n,i).
Consider multiplying together the factors BbBb/2 . . .B2 (where b ∈ (1, n) divides n). Since Bi ∈ BF (n,i),

by definition it is block diagonal with diagonal blocks of size i× i; in other words, Bi ∈ BD(i,n). Thus, each
of the matrices Bb,Bb/2, . . . ,B2 is in BD(b,n) (by Proposition C.12), i.e. block-diagonal with block size b× b.
This means their product BbBb/2 . . .B2 is also block diagonal with block size b× b, i.e., it is in BD(b,n).

Now, note that since Bi ∈ BF (n,i), by definition it is a block matrix with blocks of size i/2 × i/2,
where each block is a diagonal matrix (note that some of these blocks are zero, except for the case of
Bn). In other words, Bi ∈ DB(i/2,n). Thus, for all i ∈ {n, n/2, . . . , 2b}, Bi ∈ DB((2b)/2,n) = DB(b,n)

(by Proposition C.13). So, their product BnBn/2 . . .B2b is in DB(b,n) as well, as by Theorem 3 we can

write BnBn/2 . . .B2b = P>(b,n)(P(b,n)BnP>(b,n))(P(b,n)Bn/2P
>
(b,n)) . . . (P(b,n)B2bP

>
(b,n))P(b,n) and each of the

P(b,n)BiP
>
(b,n)’s in the preceding expression is in BD(n

b ,n).

Thus, if we let L = BnBn/2 . . .B2b and R = BbBb/2 . . .B2, we have B = LR and L ∈ DB(b,n),

R ∈ BD(b,n), which means that B ∈M(b,n) (Definition C.19).
To show that the inclusion is strict, notice that any M ∈ M(b,n) is the product of L and R, where

R ∈ BD(b,n) and P>(b,n)LP(b,n) ∈ BD(n
b ,n) (by Theorem 3). Notice that the identity matrix is contained

in both BD(b,n) and DB(b,n). Suppose first that b ≤
√
n. Then even if we set R to the identity, M has at

25

least n2

b ≥ n
3/2 free parameters (the entries in the blocks of the block-diagonal matrix P>(b,n)LP(b,n) can be

arbitrary, and there are b such blocks each of size n
b). Similarly, in the case b >

√
n, we can set L to the

identity, and M has at least nb ≥ n3/2 free parameters (the entries of the block-diagonal matrix R can be
arbitrary, and there are nb total of these). Thus, at least n3/2 parameters are required to uniquely describe
any matrix in M(b,n). However, a butterfly matrix in B(n) has only 2n log2 n parameters. For n > 256,
2n log2 n < n3/2. (Note that this analysis is not tight: a more careful analysis can show the inclusion is strict
even for smaller values of n.)

We end this section with a theorem on the expressivity of the “monarch hierarchy” (products of monarch
matrices), which follows from Theorem 1 of [13].

Theorem 5 (Monarch hierarchy expressivity). Let M be an n×n matrix such that matrix-vector multiplication
of M and an arbitrary vector v (i.e., computation of Mv) can be represented as a linear arithmetic circuit

with depth d and s total gates. Let b ∈ (1, n) be a power of 2 that divides n. Then, M ∈ (MM∗(b,n))
O(d)
O(s/n).

Proof. Theorem 1 of Dao et al. [13] says that if n is a power of 2 and A is an n × n matrix such that
multiplying any vector v by A can be represented as a linear arithmetic circuit with depth ≤ d and ≤ s total

gates, then A ∈ (BB∗(n))
O(d)
O(s/n) (this is the “kaleidoscope representation” of A).

Recall from Theorem 4 that for any b ∈ (1, n) that is a power of 2 and divides n, M(b,n) ⊃ B(n); thus,
this implies MM∗(b,e·n) ⊃ BB∗(e·n), and in turn (MM∗(b,n))we ⊃ (BB∗(n))we .

As A ∈ (BB∗(n))
O(d)
O(s/n), we thus have A ∈ (MM∗(b,n))

O(d)
O(s/n).

As per [13], the class of kaleidoscope matrices (BB∗(n))
O(d)
O(s/n) has O(ds log s) parameters and runtime,

compared to the O(s) parameters and runtime of the circuit. Note that at worst, s is O(n2).
Define f(n, s) to be the largest power of 2 that is ≤ min

{
n
2 ,
√
s
}

. Note that f(n, s) = O(
√
s), and since

s = O(n2), f(n, s) = Ω(
√
s), so f(n, s) = Θ(

√
s). We thus have A ∈ (MM∗(f(n,s),n))

O(d)
O(s/n). The class

(MM∗(f(n,s),n))
O(d)
O(s/n) has O(d s2

f(n,s) + dsf(n, s)) = O(ds3/2) parameters. Thus, the monarch representation

of A is suboptimal by at most an O(d
√
s) factor compared to the O(d log s) of kaleidoscope.

C.2 General rectangular matrices

In this section, we extend the Monarch parametrization to apply to rectangular matrices, and prove some
basic properties of the relevant matrix classes. (Note that our subsequent theoretical results (Appendix D)
do not depend on this section, as they focus on the square parametrization.)

For the rest of the section, we will assume that n1, n2, n3, b1, b2, b3 ≥ 1 are integers such that:

• bi divides ni for all 1 ≤ i ≤ 3, and

• n1

b1
= n2

b2
.

We begin with the definition of the following class of rectangular block-diagonal matrices:

Definition C.14. For 0 ≤ i < n
b1

, let Ri ∈ Fb2×b1 be a b2 × b1 matrix. Then define the matrix R ∈ Fn2×n1

as follows:
R = diag

(
R0, . . . ,Rn1

b1
−1

)
. (9)

We say that R has block size b2 × b1. Recall that we have assumed n1

b1
= n2

b2
, so Eq. (9) is well-defined.

(Note that the number of possible nonzero values in R is n1

b1
· b1 × b2 = n1b2.) We denote the class of all

matrices R expressible in this form by BD(b2×b1,n2×n1). Note that this class is only defined when n1

b1
= n2

n2
.

We restate the above definition equivalently as:

Proposition C.15. R ∈ Fn2×n1 is in BD(b2×b1,n2×n1) (with n1

b1
= n2

n2
) if and only if the following holds

for any 0 ≤ i < n2 and 0 ≤ j < n1. Let i ≡ (i1, i0)b2 and j ≡ (j1, j0)b1 (recalling this notation from
Definition C.6. Then

26

1. if i1 6= j1, then R[i, j] = 0.

2. Else (i.e., when i1 = j1), then R[i, j] = Ri1 [i0, j0].

Before we define the rectangular L, we first need to define the notion of a ‘wrapped diagonal’ matrix:

Definition C.16. A wrapped diagonal matrix S ∈ Fb3×b2 is defined as follows. First assume b2 ≤ b3. Then
for any 0 ≤ i < b3 and 0 ≤ j < b2, we have the following. If i mod b2 6= j, then S[i, j] = 0. (If b2 > b3, then
instead apply the previous definition to S>.)

We now define the following class of block matrices with each block a wrapped diagonal matrix.

Definition C.17. Let L ∈ Fn3×n2 have the form:

L =


S0,0 . . . S0,

n2
b2
−1

...
. . .

...
Sn3

b3
−1,0 . . . Sn3

b3
−1,

n2
b2
−1

 , (10)

where each S·,· is a wrapped diagonal matrix in Fb3×b2 .

We say that L has block size b3 × b2. (Note that the number of possible nonzero values in L is(
n2

b2
· n3

b3

)
max(b2, b3) = n2·n3

min(b2,b3) .) We denote the class of all matrices L expressible in this form by

DB(b3×b2,n3×n2).
We restate the above definition equivalently as:

Proposition C.18. L ∈ Fn3×n2 is in DB(b3×b2,n3×n2) if and only if the following holds for any 0 ≤ i < n3

and 0 ≤ j < n2. Let i ≡ (i1, i0)b3 and j ≡ (j1, j0)b2 . Assuming b2 ≤ b3, we have:

1. if i0 mod b2 6= j0, then L[i, j] = 0.

2. Else, (i.e., when i0 mod b2 = j0), then L[i, j] = Si1,j1 [i0, j0].

If b2 > b3, then in the above, the condition “i0 mod b2 6= j0” gets replaced by “j0 mod b2 6= i0.”

Using the above definitions, we now define the class of rectangular Monarch matrices.

Definition C.19 (Rectangular Monarch Matrix). Let M ∈ Fn3×n1 be a matrix of the form:

M = LR (11)

where L ∈ DB(b3×b2,n3×n2) and R ∈ BD(b2×b1,n2×n1).

(As mentioned before, we assume bi divides ni for i = 1, 2, 3 and that n1/b1 = n2/b2.) We denote the
class of all matrices M expressible in this form byM((b1,b2,b3),(n1,n2,n3)). Observe that when b1 = b2 = b3 = b
and n1 = n2 = n3 = n, this is exactly the matrix class M(b,n) in Definition C.19.

We are now ready to prove our main result in this section, which essentially follows from the observation
that if we permute the rows and columns of L such that the row/column block size in L becomes the number
of row/columns blocks in the permuted matrix (and vice-versa) then the permuted matrix has the form of R.

Theorem 6. Let 1 ≤ b, n2, n3 be such that b divides n2 and n3. Suppose L ∈ Fn3×n2 ∈ DB(b×b,n3×n2). Then
if we define

R′ = P(b,n3) · L ·P>(b,n2),

we have that R′ ∈ BD(
n3
b3
×n2

b2
,n3×n2).

Proof. We recall that multiplying an m×n matrix on the right (and left resp.) by P>(b,n) = P(n
b ,n) (and P(b,m)

resp.) permutes the columns (and rows resp.) of the matrix according to σ(b,n) (and σ(b,m)) respectively.5

This implies that for any 0 ≤ i, j < n:

R′[σ(b,n3)(i), σ(b,n2)(j)] = L[i, j]. (12)

5This uses the fact that
(
σ(b,n)

)−1
= σ(n

b
,n).

27

Recall that in the notation of Definition C.17 we have b2 = b3 = b, so we are in the b2 ≤ b3 case. To
complete the proof, we will argue that R′ satisfies the two conditions in Proposition C.15.6

Towards this end, let 0 ≤ i, j < n be arbitrary indices and further, define i = (i1, i0)b and j = (j1, j0)b.
Then note that σ(b,n3)(i) = (i0, i1)n3

b
and σ(b,n2)(j) = (j0, j1)n2

b
.

By Proposition C.18, we have that if i0 mod b 6= j0, then L[i, j] = 0. Note that since i0, j0 < b by
definition, the condition i0 mod b 6= j0 is equivalent to saying i0 6= j0. Note that i0 6= j0 satisfies the
pre-condition for base size n3

b ×
n2

b for indices (σ(b,n3)(i), σ(b,n2)(j)) in item 1 in Proposition C.15. Then
by Eq. (12), we have that R′[σ(b,n3)(i), σ(b,n2)(j)] = 0, which satisfies item 1 in Proposition C.15.

Now consider the case that i0 = j mod b, which by the observation in the above paragraph is the same as
i0 = j0. Then by item 2 in Proposition C.18, we have that L[i, j] = Si1,j1 [i0, j0]. Note that i0 = j0 satisfies
the pre-condition for base size n3

b ×
n2

b for indices (σ(b,n3)(i), σ(b,n2)(j)) in item 2 in Proposition C.15 if we

define R′i0 ∈ F
n3
b ×

n2
b as follows:

R′i0 [i1, j1] = Si1,j1 [i0, j0].

Note that the above implies that

R′ = diag
(
R′0, . . . ,R

′
b−1

)
,

where R′· is as defined in the above paragraph. This means R′ ∈ BD(
n3
b ×

n2
b ,n3×n2), since R′ has size n3 × n2

and each block R′i0 is a matrix of size n3

b ×
n2

b .

D Theory

D.1 Expressiveness of M
Proof of Proposition 3.2. As Dao et al. [13, Appendix J] show, the matrix class BB∗ can represent convolution,
Hadamard transform, Toeplitz matrices, and AFDF. Since the Monarch class MM∗ contains the butterfly
class BB∗ (which follows from Theorem 4), it follows that MM∗ can also represent those transforms /
matrices.

Note that the Hadamard transform is actually in B [13], so it is in M as well.
Dao et al. [13, Appendix J] also show that the matrix class (BB∗)2 can represent the Fourier, discrete

sine/cosine transforms, the (HD)3 class, Fastfood, and ACDC matrices. By the same argument, as the
Monarch class (MM∗)2 contains the butterfly class (BB∗)2, (MM∗)2 can thus also represent these transforms
/ matrices.

D.2 Projection onto M
In Algorithm 1, we provide pseudocode for the algorithm outlined in Section 3.3. We now prove Theorem 1.
Note that the rectangular matrix case generalizes naturally from the square matrix case, by replacing square
blocks with rectangular blocks.

Proof of Theorem 1. As shown in Section 3.3, after reshaping the Monarch matrix M as a 4D tensor M`jki

and writing the two block-diagonal matrices L and R as 3D tensors Lj`k and Rkji, we obtain:

M`jki = Lj`kRkji, for `, j, k, i = 1, . . . ,m.

We can similarly reshape the given matrix A into a 4D tensor A`jki with size m×m×m×m.

6Note that we also need that the ratios of the row/column length to the row/column block sizes are the same; i.e., in our case
we need that n3

n3/b3
= n2

n2/b2
, which is true because b2 = b3 = b.

28

Since the squared Frobenius norm objective ‖A−M‖2F (Eq. (1)) only depends on the entries of A and M
and not their shape, we can rewrite the objective after reshaping:

‖A−M‖2F =
∑
`jki

(A`jki −M`jki)
2

=
∑
`jki

(A`jki − Lj`kRkji)
2

=
∑
jk

∑
`i

(A`jki − Lj`kRkji)
2
.

We see that the objective decomposes into m×m independent terms (indexed by j and k). For each value of
j and k, the objective is exactly the rank-1 approximation objective for the corresponding slice A:,j,k,:.

Let ujkv
>
jk be the best rank-1 approximation of A:,j,k,: (which we can compute using the SVD, by

the Eckart–Young theorem [26] for Frobenius norm). Let R be the 3D tensor of size m ×m ×m where
Rkji = (vjk)i, and let L be the 3D tensor of size m×m×m where Lj`k = (ujk)`. Then each of the terms in
the objective is minimized, and thus the overall objective is minimized.

We see that the algorithm requires m ·m SVD’s, each of size m×m. Each SVD takes O(m3) time [100],
so the overall time complexity is O(m5) = O(n5/2).

D.3 Monarch Factorizations for Matrices in MM∗

In this section, we describe the algorithm for factorizing matrices in MM∗ previously outlined in Section 3.4
(Algorithm 2). Again, Algorithm 2 handles the general case where the block sizes of L and R can be different.
We then prove Theorem 7, which has Theorem 2 as an immediate corollary.

Our goal is thus to compute the matrices L1,R,L2 in the factorization of M. In order to compute this
factorization, we require the following assumption on M:

Assumption D.1. Assume that (1) M ∈MM∗(b,n) is invertible and (2) M can be written as (P>(b,n)L1P(b,n))R(P>(b,n)L2P(b,n)),

where L1,L2 ∈ BD(n
b ,n),R ∈ BD(b,n), and R has no nonzero entries in its diagonal blocks. (Note that by

Proposition C.10, we can write any M ∈MM∗(b,n) as (P>(b,n)L1P(b,n))R(P>(b,n)L2P(b,n)); thus, (2) is merely

the assumption that R has no zero entries in its blocks.)

This is analogous to Assumption 3.3, except applicable to the more general block size b. We now present
Algorithm 2 to find factors L1,R,L2 of matrices satisfying Assumption D.1.

First, observe that if we define M̃ = P(b,n)MP>(b,n), we have M̃ = L1(P(b,n)RP>(b,n))L2. By Theorem 3,

the matrix P(b,n)RP>(b,n) is in DB(n
b ,n), i.e., is a block matrix with blocks of size n

b ×
n
b where each block is a

diagonal matrix. Thus, we can write:


M̃11 M̃12 . . . M̃1b

M̃21 M̃22 . . . M̃2b

. . .
. . .

. . .
. . .

M̃b1 M̃b2 . . . M̃bb

 =


A1

A2

. . .

Ab




D11 D12 . . . D1b

D21 D22 . . . D2b

. . .
. . .

. . .
. . .

Db1 Db2 . . . Dbb




C1

C2

. . .

Cb

 ,

where A1, . . . ,Ab are n
b ×

n
b matrices that are the diagonal blocks of L1; C1, . . . ,Cb are n

b ×
n
b matrices

that are the diagonal blocks of L2; D11, . . . ,D1b,D21, . . . ,D2b, . . . ,Db1, . . . ,Dbb are n
b ×

n
b diagonal matrices

that are the blocks of P(b,n)RP>(b,n); and M̃11, . . . , M̃1b, M̃21, . . . , M̃2b, . . . , M̃b1, . . . , M̃bb are n
b ×

n
b matrices

that are the blocks of M̃ = P(b,n)MP>(b,n).

Thus, we have the set of matrix equations AiDijCj = M̃ij , for 1 ≤ i, j ≤ b. Notice that the assumption
that the R has no nonzero entries in its blocks (Assumption D.1) is equivalent to assuming that none of the
diagonal entries of any matrix Dij is equal to zero. Also, the assumption that M is invertible implies that
L1,L2 are invertible (since the product of square singular matrices is singular), which in turn implies that
each block matrix Ai and each block matrix Cj is invertible (since a square block-diagonal matrix where one

29

of the blocks is singular is itself singular). Taken together, this means that each matrix M̃ij is invertible,

since M̃ij = AiDijCj and each of the matrices on the RHS of the equation is invertible.

Observe that given a solution to the set of equations AiDijCj = M̃ij , if we rescale and permute the
matrices Ai,Dij ,Cj appropriately, the result is still a solution to the equations. Specifically, let P be any
permutation matrix and {Si}bi=1, {S′j}bj=1 be any invertible diagonal matrices (i.e., diagonal matrices without

any zeros on the diagonal). Define D′ij = SiP
>DijPS′j for all i, j. Notice that P>DijP = P−1DijP is

diagonal because Dij is diagonal. Thus, D′ij is diagonal (and invertible) since the product of diagonal matrices

is diagonal. Define A′i = AiPS−1
i and C′j = P>S′−1

j Cj for all i, j. Thus, we have that M̃ij = AiDijCj =

(AiPS−1
i)D′ij(P

>S′−1
j Cj) = A′iD

′
ijC
′
j for all i, j: in other words, we can scale the Ai’s on the right by any

invertible diagonal matrix, the Cj ’s on the left by any invertible diagonal matrix, and apply a matching
permutation to the rows of the Cj ’s and the columns of the Ai’s, and apply matching transformations to the

Dij ’s and the result will still be a valid factorization. This implies that as long as we recover a “correct” Ĉ1

up to a permutation and scaling of its rows, we can set the D̂i1’s and D̂1j ’s to the identity matrix, and then

compute the remaining Âi’s and Ĉj ’s via the equations Âi = M̃i1Ĉ
−1
1 and Ĉj = Â−1

1 M̃1j .

To understand how we can compute such a matrix Ĉ1, define F(i, j) = M̃−1
i1 M̃ijM̃

−1
1j M̃11 and observe

that

F(i, j) = M̃−1
i1 M̃ijM̃

−1
1j M̃11

= (C−1
1 D−1

i1 A−1
i)(AiDijCj)(C

−1
j D−1

1j A−1
1)(A1D11C1)

= C−1
1 (D−1

i1 DijD
−1
1j D11)C1

for all 1 ≤ i, j ≤ b. Note that D−1
i1 DijD

−1
1j D11 is a diagonal matrix; thus, C1F(i, j)C−1

1 is diagonal for all
i, j, i.e., C1 simultaneously diagonalizes all the matrices F(i, j). (Note: In this paper, we say that a matrix Q
“simultaneously diagonalizes” a set of matrices G1, . . . ,Gk if QGiQ

−1 is a diagonal matrix for all 1 ≤ i ≤ k.
Note that sometimes the opposite convention [i.e., Q−1GiQ must be diagonal] is used in the literature; we
adopt the former for notational convenience.) Indeed, if any matrix simultaneously diagonalizes all these
matrices, then it leads to a valid factorization, which we show in the proof of Theorem 7. Therefore, we
compute some matrix that simultaneously diagonalizes all these matrices, and set Ĉ1 to that matrix.

These ideas form the basis of Algorithm 2, which is presented formally below. Algorithm 2 uses simultaneous
diagonalization as a subroutine; we discuss how to solve simultaneous diagonalization problems below.

Algorithm 2 MM∗ Factorization

Require: Block size b; matrix M ∈MM∗(b,n) satisfying Assumption D.1

0: Define M̃ij (of size n
b ×

n
b) as the i, j block of P(b,n)MP>(b,n)

1: for 1 ≤ i, j ≤ b do

1: Compute F(i, j) := M̃−1
i1 M̃ijM̃

−1
1j M̃11

2: end for
2: Ĉ1 ← SIMULTANEOUS DIAG

(
{F(i, j)}b,bi,j=1,1

)
3: for 1 ≤ i ≤ b do
3: Âi ← M̃i1Ĉ

−1
1

4: end for
5: for 2 ≤ j ≤ b do

5: Ĉj ← Â−1
1 M̃1j

6: end for
7: for 1 ≤ i, j ≤ b do

7: D̂ij ← Â−1
i M̃ijĈ

−1
j

8: end for

Theorem 7. Given an n × n matrix M ∈ MM∗(b,n) satisfying Assumption 3.3, Algorithm 2 finds its

Monarch factors L1,R,L2 in time O
(

n3

b

)
.

30

Notice that by setting b =
√
n, we immediately recover Theorem 2. Note also that by Proposition C.11,

Theorem 7 implies that given an M ∈M∗M(n
b ,n), we can find its Monarch factorization in time O(n3

b) as

well (e.g., simply permute it to a matrix in MM∗(b,n) and then run Algorithm 2). We now prove Theorem 7.

Proof. We first show that the factorization returned by Algorithm 2 is valid, which reduces to showing that

(1) M̃ij = ÂiD̂ijĈj and (2) D̂ij is diagonal, for all 1 ≤ i, j ≤ b as argued above.

As argued above, since M̃ satisfies Assumption D.1, then there exists a matrix (C1) that simultaneously
diagonalizes all the F(i, j)’s. Thus, we can always compute some matrix that simultaneously diagonalizes
these matrices (i.e., line 2 of Algorithm 2 will always return a valid solution); we discuss how to actually do

this below. By definition of simultaneous diagonalization, this matrix (which we set Ĉ1 to) is invertible.

So, Âi = M̃i1Ĉ
−1
1 is invertible for all i. Thus Ĉj = Â−1

1 M̃1j is invertible for all j as well. (Note that the

equation Ĉj = Â−1
1 M̃1j holds by construction of Ĉj for j ≥ 2, and by construction of Â1 when j = 1.) As

D̂ij = Â−1
i M̃ijĈ

−1
j by definition, we thus have that M̃ij = ÂiD̂ijĈj for all i, j.

It remains to show that D̂ij is diagonal.

D̂ij = Â−1
i M̃ijĈ

−1
j

= (M̃i1Ĉ
−1
1)−1M̃ij(Â

−1
1 M̃1j)

−1

= Ĉ1M̃
−1
i1 M̃ijM̃

−1
1j Â1

= Ĉ1(M̃−1
i1 M̃ijM̃

−1
1j M̃11)Ĉ−1

1

= Ĉ1F(i, j)Ĉ−1
1

But Ĉ1F(i, j)Ĉ−1
1 is diagonal for all i, j by definition of Ĉ1 as a matrix that simultaneously diagonalizes

the F(i, j)’s.

As for L1,R,L2, recall that we can simply set L1 = diag(Â1, . . . , Âb), L2 = diag(Ĉ1, . . . , Ĉb), and

R = P>(b,n)


D̂11 D̂12 . . . D̂1b

D̂21 D̂22 . . . D̂2b

. . .
. . .

. . .
. . .

D̂b1 D̂b2 . . . D̂bb

P(b,n), and we have M = (P>(b,n)L1P(b,n))R(P>(b,n)L2P(b,n)) with

L1,L2 ∈ BD(n
b ,n) and R ∈ BD(b,n) as argued above. This completes the proof of correctness.

Now, we analyze the runtime. There are b2 matrices F(i, j) to compute, and computing each one takes

O(n3

b3) time. Once we’ve found Ĉ1, there are b matrices Âi to compute, each one taking O(n3

b3) time, and

b− 1 matrices Ĉj (for j ≥ 2) to compute, each one taking O(n
3

b3) time, and then b2 matrices D̂ij to compute,

each taking O(n3

b3) time. (Note that we can compute each of these faster using fast matrix multiplication /
inversion; however, it turns out not to matter as the simultaneous diagonalization is the bottleneck.)

Finally, we analyze the simultaneous diagonalization runtime. Simultaneous diagonalization of a set of
matrices {G1, . . . ,Gk} is equivalent to finding a mutual eigenbasis for the matrices, since if Di is a diagonal
matrix and QGiQ

−1 = Di, then the jth column of Q is an eigenvector of Gi with eigenvalue equal to the
jth entry of Di.

A simple algorithm for simultaneous diagonalizing a set of matrices, assuming that they are in fact
simultaneously diagonalizable (which implies that each matrix is individually diagonalizable), is as follows
(e.g. see [10, 4]): first, set i = 1 and diagonalize the first matrix Gi = G1 (i.e., find an eigenbasis), and
set Q to be the diagonalizing matrix (i.e., the matrix of eigenvectors). So, QG1Q

−1 is diagonal. By the
assumption that the matrices are in fact simultaneously diagonalizable, QGjQ

−1 will be permuted block
diagonal for all j 6= i as well: the size of each block corresponds to the multiplicity of the corresponding
eigenvalue of G1. (Note that if G1’s has unique eigenvalues, then the eigenbasis is unique (up to permutation
and nonzero scaling), and thus in this case G1 uniquely determines the simultaneously diagonalizing matrix,
up to arbitrary permutation and nonzero scaling of the rows. In other words, the block size will be 1 in this
case, meaning that QGjQ

−1 will be diagonal for all j, and we are done.)
So now, we repeat the following for all i up to k. Increment i and compute QGiQ

−1. If it is already
diagonal, move on. Otherwise, first permute Q ← PQP> so that it is block diagonal (observe that this

31

maintains the property that QGjQ
−1 is diagonal for all j < i, since PDP> is diagonal for any permutation

P and diagonal matrix D). Then for each block of size > 1, compute a matrix that diagonalizes that
block; denoting the number of blocks (including size-1 blocks) by b, let Q′1, . . . ,Q

′
b denote the corresponding

diagonalizing transformations, or the scalar 1 when the block is of size 1. Finally set Q′ ← diag(Q′1, . . . ,Q
′
b)

and Q← Q′−1QQ′. By construction, QGiQ
−1 will now be diagonal; also, QGjQ

−1 is still diagonal for all
j < i, because any linear combination of a set of eigenvectors of a diagonalizable matrix corresponding to a
repeated eigenvalue λ is itself an eigenvector of that matrix with eigenvalue λ.

Thus, once we’ve processed all k of the Gi’s, Q is a matrix that simultaneously diagonalizes all of them.
At each step i, we compute diagonalizing transformations for square block matrices whose sizes s1, . . . , sk
sum to n. As eigendecomposition (for a fixed desired precision) takes O(n3) time for an n× n matrix, this

means the total runtime of step i is O
(∑k

j=1 s
3
i

)
≤ O(n3). Thus the total runtime of the entire simultaneous

diagonalization procedure is O(kn3), where k is the number of matrices. (Note that iterative methods for
simultaneous diagonalization also exist [4, 2] and could be used to speed up this step in practice.)

Applying this to our problem, we have b2 matrices to simultaneously diagonalize, each of size n
b ×

n
b . This

leads to a total runtime of O
(
b2 · (n

b)3
)

= O
(

n3

b

)
for the entire simultaneous diagonalization procedure, and

thus the runtime of Algorithm 2 is also O
(

n3

b

)
, as desired.

(Note: As can be seen from the above analysis, we don’t actually need M itself to be invertible—we

simply need all its blocks M̃ij to be, so that all the Ai’s and Cj ’s are, which is a weaker assumption that
invertibility of M given that we already assumed the Dij ’s are invertible due to the nonzero assumption on
the blocks of R.)

E Experiment Details

E.1 Model Configurations and Hyperparameters

We summarize the details required to replicate our experiments below.

E.1.1 Image Classification

Baseline Model: For dense models, we use standard implementations of ViT [24], MLP-Mixertolstikhin2021mlp
from the timm library and from the T2T-ViT codebase [107].

The Monarch version of these models simply swap out the dense weight matrices in the attention blocks
(projection matrices) and in the FFN block (linear layers) with Monarch matrices. We set the number of
blocks in the block-diagonal matrices to 4. We also reduce the amount of regularization (stochastic depth) as
our Monarch models are smaller than the dense models.

We adopt the hyperparameters (optimizer, learning rate, learning rate scheduler) from Yuan et al. [107].
Details are in Table 9.

We measure the wall-clock training time on V100 GPUs.

Table 9: Configuration of the ImageNet experiment
Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch

ViT-Small AdamW 0.05 0.001 0.1 5/300
Monarch-ViT-Small AdamW 0.05 0.001 0 5/300

ViT-Base AdamW 0.05 0.001 0.1 5/300
Monarch-ViT-Base AdamW 0.05 0.001 0 5/300

Mixer-Small AdamW 0.1 0.001 0.1 5/300
Monarch-Mixer-Small AdamW 0.1 0.001 0 5/300

Mixer-Base AdamW 0.1 0.001 0.1 5/300
Monarch-Mixer-Base AdamW 0.1 0.001 0 5/300

We follow the naming convention in the Vision Transformer paper and MLP-Mixer paper. In particular,

32

ViT-S and ViT-B refers to the small and base ViT models respectively, and 16 refers to the patch size of
16x16. The MLP-Mixer models follow the same convention.

E.1.2 Language Modeling

For dense models, we use standard implementations of GPT-2 [86] from Huggingface transformers library
and from Nvidia’s Megatron-LM repo. We follow the training recipe of the Megatron-LM repo.

The Monarch version of these models simply swap out the dense weight matrices in the attention blocks
(projection matrices) and in the FFN block (linear layers) with Monarch matrices. We set the number of
blocks in the block-diagonal matrices to 4. We also reduce the regularization strength (dropout) as our model
is smaller.

We report the hyperparameters used in Table 10 and Table 11. We use an effective batch size of 512, and
use gradient accumulation to fit into available GPU memory.

We measure the wall-clock training time on V100 GPUs.

Table 10: Configuration of the WikiText-103 experiments
Model Optimizer Weight Decay Learning Rate Dropout Warmup/Epoch

GPT-2-small AdamW 0.1 6e-4 0.1 10/100
Monarch-GPT-2-small AdamW 0.1 6e-4 0.0 10/100

GPT-2-medium AdamW 0.1 1.5e-4 0.1 10/100
Monarch-GPT-2-medium AdamW 0.1 1.5e-4 0.0 10/100

Table 11: Configuration of the OpenWebText experiments
Model Optimizer Weight Decay Learning Rate Dropout Warmup/Total iterations

GPT-2-Small AdamW 0.1 6e-4 0.1 4k/400k
Monarch-GPT-2-Small AdamW 0.1 6e-4 0.0 4k/400k

GPT-2-Medium AdamW 0.1 1.5e-4 0.1 4k/400k
Monarch-GPT-2-Medium AdamW 0.1 1.5e-4 0.0 4k/400k

E.2 Details for PDE Solving

We adopt the experiment setting and data generation of Navier-Stokes Equation from FNO [65]. It considers
the 2-d Navier-Stokes equation for a viscous, incompressible fliud in vorticity form on the unit tortus:

∂tw(x, t) + u(x, t) · ∇w(x, t) = v∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T] (13)

∇w(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, T] (14)

w(x, 0) = w0(x), x ∈ (0, 1)2 (15)

(16)

where u ∈ C([, T0]);Hper((0, 1)2;R2)) for any r > 0 is the velocity field, w = ∇ × u is the vorticity,
w0 ∈ L2

per((0, 1)2;R) is the initial vorticity, v ∈ R+ is the viscosity coefficient, and f ∈ L2
per((0, 1)2;R)

is the forcing function. T represents the time interval since it is time-dependent equation. v represents
the viscosity. N represents the number of training pairs or data. Table 3 shows the results for viscosities
v = 1e− 3, 1e− 4, 1e− 5, T = 50, 30, 20 respectively and use N = 1000.

E.3 Details for GPT-2 Downstream Tasks

We train Pixelfly-GPT2-small on a larger scale dataset, OpenWebText, and evaluate the downstream quality
on zero-shot generation and classification tasks from [108], achieving comparable and even better performance
to the dense model. Specifically, the datasets contains five popular classification tasks: SST2, Trec, CB,
Agnews, and Dbpedia. We also adapated the calibrated metric from [108] for evaluation. Results for each
individual task are shown in Table 12.

33

Table 12: The performance (accuracy) of GPT-2-medium trained with Monarch reverse sparsification and
with conventional dense training on text classification benchmarks.

Model OpenWebText (ppl) Speedup Classification (avg acc)

GPT-2m 68.3 37.0 10.7 52.0 26.6
Monarch-GPT-2m 72 38.6 12.5 47.3 23.0

E.4 Details for BERT Pretraining

We follow the training procedure and hyperparameters of the reference implementation from Nvidia Deep Learn-
ing examples (https://github.com/NVIDIA/DeepLearningExamples). In particular, we use the LAMB
optimizer with learning rate 4e-3. We use as large a minibatch size as possible that still fits in the GPU
memory (A100-40GB), and use gradient accumulation to reach an effective batch size of 64k sequences for
phase 1 (maximum sequence length 128) and 32k for phase 2 (maximum sequence legnth 512). We train is
mixed precision (fp16 and fp32).

We use all the optimizations that were in Nvidia’s BERT implementation in MLPerf 1.1:

1. Only compute the prediction scores (last layer) for masked tokens as the outputs of other tokens are
not used to compute the masked language modeling loss.

2. Remove padding tokens and only compute the attention for non-padding tokens.

3. Use a fused CUDA kernel (FMHA) that combines 4 steps into one kernel: computes QKT , take softmax,
apply dropout, multiply by V , where Q,K, V are the query, key, and value respectively.

4. Fuse matrix multiplication and adding bias into one CUDA kernel in the feed-forward network (FFN)
layers. The gradient of the bias is also fused with the matrix multiplication the backward pass.

5. Fuse matrix multiplication and adding bias into one CUDA kernel in the attention output projection.

6. Fuse dropout and adding residual in the residual connection at the end on the attention and FFN
blocks.

We train with DeepSpeed [88] ZeRO optimizer stage 1 to shard the optimizer states, thus reducing GPU
memory usage and allowing us to use larger batch sizes. For the Nvidia MLPerf implementation, we report
the speed for both Apex’s automatic mix-precision (AMP) level O2 (as in the original implementation), and
DeepSpeed ZeRO optimizer.

E.5 Accelerated Multi-coil MRI Reconstruction

E.5.1 Background

In multi-coil MRI, multiple receiver coils (i.e. sensors) acquire complex-valued measurements in the spatial
frequency (a.k.a. k-space) domain. These measurements are modulated by the spatially-varying sensitivity
maps, which characterize the sensitivity of each coil to the imaging target. In accelerated MRI, scan times
are reduced by decreasing the number of samples acquired in k-space. Because the data is sampled below the
Nyquist rate, reconstructing the underlying image is an ill-posed problem.

The forward problem for accelerated multi-coil MRI can be written as the matrix equation

y = ΩFSx+ ε

where Ω is the binary undersampling mask that indexes acquired samples in k-space, y is the vectorized
measured signal in k-space, F is the discrete Fourier transform matrix, S is the receiver coil sensitivity maps,
x is the ground-truth signal in image-space, and ε is additive complex Gaussian noise. The acceleration factor

is given by R =
∑|N|

i Ωi

|Ω| .

34

https://github.com/NVIDIA/DeepLearningExamples

E.5.2 Experimental Details

Dataset. We benchmark our method on the SKM-TEA Raw Data Track, which consists of dual-echo 3D
MRI scans [20]. Scans are accelerated using Poisson Disc undersampling masks distributed with the dataset.
During training, Poisson Disc masks are generated, cached, and applied to mask the k-space data to simulate
accelerated scans.

Matrix Shape. Like all matrices, Monarch matrices have an explicit shape constraint, which is a limitation
of these matrices for MRI reconstruction tasks. Thus, the SKM-TEA dataset was filtered to include scans of
shape 512× 512× 160, which is the most frequently occuring scan shape. A total of 3 scans were dropped
from the original 155 scans in the dataset. Our method and all baselines were trained on this filtered dataset.

Table 13: Baseline configurations of the SKM-TEA MRI reconstruction experiments.
Model Params Optimizer Weight Decay Learning Rate Epoch

SENSE — — — — —
U-Net 7.8M Adam 1e-4 1e-3 20

mSENSE 57.5K Adam 1e-4 1e-3 20

Baselines. We compare our method to two baselines, SENSE and U-Net. Parameter count and hyperpa-
rameters are available in Table 13.

• SENSE : SENSE performs a linear combination of the images acquired on each coil [84]. Here, the
inverse fsat Fourier transform (IFFT) is applied to the acquired k-space for each coil. The resulting
images are combined into a single complex image by weighting each coil image by corresponding coil
sensitivity maps. In accelerated MRI, the unsampled frequencies are zero-valued; thus, SENSE produces
a zero-filled image. Note, SENSE does not require any training.

• U-Net : U-Net is a popular fully convolutional neural network baseline for MRI reconstruction [90].
We use the default implementation and hyperparameters used by Desai et al. [20] to benchmark
the SKM-TEA dataset. In this approach, the SENSE-reconstructed zero-filled image is mapped to
SENSE-reconstructed ground truth images.

Monarch-SENSE (mSENSE): We propose a modification to the SENSE method, in which the (IFFT)
is parameterized by a factorized Monarch matrix. This matrix is initialized to the IFFT but, unlike SENSE,
is learnable. While mSENSE is trainable, it has 137x fewer trainable parameters than U-Net.

Metrics: We evaluate reconstruction performance using peak signal-to-noise ratio (pSNR) and structural
similarity (SSIM) on both echoes (echo1 - E1, echo2 - E2) separately. Both metrics were computed on the 3D
volume of each echo.

Extended Results. We provide sample reconstructions of SENSE, mSENSE, and U-Net in data-limited
settings for first (Fig. 6) and second (Fig. 7) echoes. Both SENSE and U-Net reconstructed images have
aliasing artifacts. Due to the random Poisson Disc undersampling pattern, these artifacts are incoherent,
causing them to manifest as blurring around fine structures and edges. In contrast, mSENSE can recover
these structures with higher fidelity. Even in the second echo, which has lower signal-to-noise ratio (SNR)
than the first echo, mSENSE does not overblur the image.

35

Figure 6: Sample reconstructions at 2x acceleration for the first echo in the SKM-TEA dataset using SENSE,
Monarch-SENSE (mSENSE), and U-Net. Both mSENSE and U-Net are trained with 1 training scan. SENSE
is an untrained method.

36

Figure 7: Sample reconstructions at 2x acceleration for the second echo in the SKM-TEA dataset using
SENSE, Monarch SENSE (mSENSE), and U-Net. Both mSENSE and U-Net are trained with 1 training
scan. SENSE is an untrained method.

37

	Introduction
	Related Work and Background
	Related Work
	Butterfly Matrices

	Monarch: Definition & Algorithms
	Monarch Parametrization for Square Matrices
	Expressiveness and Efficiency
	Expressiveness
	Efficiency

	Projection on the Set M of Monarch Matrices
	Factorization of MM* Matrices

	Using Monarch Matrices in Model Training
	Experiments
	End-to-End Training
	Benchmark Tasks: Image Classification, Language Modeling
	PDE solving and multi-coil MRI reconstruction

	Sparse-to-Dense Training (reverse sparsification)
	Dense-to-Sparse Fine-tuning

	Conclusion
	Extended Related Work
	Notation Review
	General Monarch Matrix Parametrization
	General square matrices
	Parametrization
	Properties

	General rectangular matrices

	Theory
	Expressiveness of M
	Projection onto M
	Monarch Factorizations for Matrices in MM*

	Experiment Details
	Model Configurations and Hyperparameters
	Image Classification
	Language Modeling

	Details for PDE Solving
	Details for GPT-2 Downstream Tasks
	Details for BERT Pretraining
	Accelerated Multi-coil MRI Reconstruction
	Background
	Experimental Details

